Астрономы называют такие галактики призраками, они совсем неприметны в космическом пространстве. Большая удача, что их, почти беззвездных, удалось обнаружить. Ведь звезды в основном и подают сигналы радиоастрономам.
Иногда сигнала нет вовсе, и на экране у нас просто шумовая дорожка. Иногда появляются сильные сигналы, например при наблюдении области звездообразования — несколько горбов на графике, и каждый отвечает за свое пятно радиоизлучения. Это какая-то вращающаяся область вокруг молодой звезды — вихри или молодые протопланеты. Мы пытаемся выяснить, как они рождаются и как они изменяются буквально на наших глазах.
Астрономам хорошо известно, как живет и умирает звезда. Карлики с массой в половину солнечной должны жить почти 100 миллиардов лет — это намного больше нынешнего возраста Вселенной. Если звезды, как Солнце, живут около 10 миллиардов лет, то гиганты, которые в 10 раз массивнее, полностью сгорают всего за 25 миллионов лет. Чем звезда массивнее, тем ярче светит и быстрее сжигается.
Такое энергетически мощное событие происходит достаточно безобидно для нас, потому что оно разворачивается очень далеко: можно лишь видеть свечение на ночном небе. Но если взорвется одна из звезд в ближайшей окрестности Солнца, то это может быть катастрофическим явлением — атмосфера будет снесена, а планета сгорит.
Бетельгейзе — ближайшая к нам из сверхмассивных звезд, остальные восемь красных гигантов всей Вселенной расположились гораздо дальше. Она настолько огромна, что если поместить ее в центр Солнечной системы, то звезда достигла бы орбиты Марса или даже Юпитера.
Бетельгейзе очень хорошо видна летом на ночном небе, а зимой — на вечернем. Это одна из ярких звезд созвездия Ориона, сверхкрасный гигант, который находится в завершающей стадии своей жизни, когда он вот-вот взорвется. Но точность этого взрыва предсказать невозможно.
Бетельгейзе уменьшается в размерах. Последние десять лет астрономы очень внимательно наблюдают за опасной звездой, и расчеты показывают, что ее диаметр за этот период сократился на 15 процентов. Это очень быстрые темпы. Красный — предсмертный — цвет Бетельгейзе легко заметен невооруженным глазом. Непосредственно перед самим взрывом звезда станет похожей на раскаленный металл.
В Астрокосмическом центре Физического института Академии наук в рамках международного проекта «Радиоастрон» готовятся отследить, в какую сторону станет выбрасывать опасные вещества взорвавшаяся звезда.
В других галактиках, и очень редко в нашей, происходят так называемые гамма-взрывы. Изучить возможность существования таких объектов — очень важно. Поэтому у нас в плане тоже есть такое направление исследования: если в наземных обсерваториях будет обнаружен взрыв, то мы наведем «Радиоастрон» и посмотрим, в какую сторону выбрасывается вещество этого взрыва, и будем исследовать физику такого явления.
Что будет с нами? Снесет ли погибшая Бетельгейзе атмосферу Земли? Настолько ли она близко расположена, чтобы убить нас?
Астрофизики не исключают самого печального исхода. Вот одно из возможных последствий: на Землю устремятся потоки опаснейших гамма-лучей и другого космического излучения.
Степень опасности легко представить, зная, что и обычные вспышки на Солнце вызывают не просто временное недомогание у человека, а могут нас облучить, особенно на высоте порядка 10 километров, где летают пассажирские самолеты. Мы садимся в них и не подозреваем, что во время перелета подвергаемся радиационному облучению. Доза небольшая, но если есть предрасположенность к онкологическим заболеваниям, то и она может стать спусковым крючком. А летчики… Можно только представить, сколько их организм за годы полетов накапливает радиоактивных веществ. В некоторых странах пилоты входят в так называемую «категорию А» вместе с рабочими атомных станций, как подверженные радиации. Космонавты же за несколько месяцев нахождения на орбитальной станции получают немыслимую дозу радиации.
Когда человек летит в длительный космический полет, он непрерывно подвергается облучению радиацией. На клеточном уровне это приводит к довольно негативным последствиям. В частности, воздействие на ДНК-структуру может вызвать канцерогенные последствия, которые, как это известно из области радиобиологии, проявляются не сразу, а через некоторое время.
Поэтому и полет на Марс для многих астрофизиков и специалистов в ядерной физике — абсолютная фантастика. За пределами влияния Земли космический аппарат — как горошина и ничем не защищен. Солнце его будет третировать как захочет.
Полет на Марс человека технически возможен, если вложить очень много денег в этот проект, создать ракету и космический корабль. Но проблема заключается в том, как снизить радиационный риск до той оптимальной величины, когда мы можем сказать, что человек после возвращения на Землю останется живым и здоровым.