В ХХ веке эта теоретическая драма (если не трагедия) усугубилась до крайнего предела. Между двумя главными действующими лицами — наблюдаемой Вселенной и описывающей ее теорией — начались нестыковки и конфликты. Теоретики, оторванные от действительности, все более и более поддавались искушению подогнать природу под абстракции, объявить Мироздание таким (и только таким!), каким оно пригрезилось очередному бурному всплеску математического воображения. При этом подчас действуют или рассуждают совершенно произвольно: «А вот давайте-ка посмотрим, что получится, если мы в такой-то формуле поменяем знак на противоположный, то есть, скажем, „+“ на „-“.» А получится известно что — диаметрально противоположная модель Вселенной!
Если Ньютон, по словам Лагранжа, был счастливейшим из смертных, потому что знал: существует только одна Вселенная, и он, Ньютон, раз и навсегда установил ее законы, — то современные космологи — несчастнейшие из людей. Они понасоздавали десятки противоречивых моделей Вселенной, нередко взаимоисключающих друг друга. При этом критерий истинности своих детищ видится им не в соответствии хрупких математических формул объективной реальности, а в том, к примеру, чтобы сделать составленные уравнения эстетически ажурными.
Математика — тоже тайна. Но тайна особого рода. Характерная черта абстрактного мышления (как и художественного) — свободное манипулирование понятиями, сцепление их в конструкции любой степени сложности. Но ведь от игры мысли и воображения реальный Космос не меняется. Он существует и развивается по собственным объективным законам. Формула — и на «входе» и на «выходе» — не может дать больше, чем заключено в составляющих ее понятиях. Сами эти понятия находятся между собой в достаточно свободных и совершенно абстрактных отношениях, призванных отображать конкретные закономерности материального мира. Уже в силу этого никаких абсолютных формул, описывающих все неисчерпаемое богатство Природы и Космоса, не было и быть не может. Любая из формул — кем бы она ни была выведена и предложена — отражает и описывает строго определенные аспекты и грани бесконечного Мира и присущие ему совершенно конкретные связи и отношения.
Например, в современной космологии исключительное значение приобрело понятие пространственной кривизны, которая якобы присуща объективной Вселенной. На первый взгляд понятие кривизны кажется тайной за семью печатями, загадочной и парадоксальной. Человеку даже с развитым математическим воображением нелегко наглядно представить, что такое кривизна. Однако не требуется ни гениального воображения, ни особого напряжения ума для уяснения того самоочевидного факта, что кривизна не представляет собой субстратно-атрибутивной характеристики материального мира, а является результатом определенного отношения пространственных геометрических величин, причем — не просто двухчленного, а сложного и многоступенчатого отношения, одним из исходных элементов которого выступает понятие бесконечно малой величины.
Великий немецкий математик Ф. Гаусс, который ввел в научный оборот понятие меры кривизны, относил ее не к кривой поверхности вообще, а к точке на поверхности и определял как результат (частное) деления (то есть отношения) «полной кривизны элемента поверхности, прилежащего к точке, на самую площадь этого элемента». Мера кривизны означает, следовательно, «отношение бесконечно малых площадей на шаре и на кривой поверхности, взаимно друг другу соответствующих». В результате подобного отношения возникает понятие положительной, отрицательной или нулевой кривизны, служащее основанием для различных типов геометрий и в конечном счете — основой для разработки соответствующих моделей Вселенной.
Естественно-научное обоснование и философское осмысление таких моделей являются одной из актуальных проблем современной науки, при решении которых с достаточной полнотой проявляется методологическая функция философских принципов русского космизма. Без их привлечения и системного использования невозможно правильно ответить на многие животрепещущие вопросы науки.
Что такое, например, многомерные пространства и неевклидовы геометрии? Какая реальность им соответствует? Почему вообще возможны пространства различных типов и многих измерений? Да потому, естественно, что возможны различные пространственные отношения между материальными вещами и процессами. Эти конкретные и многоэлементные отношения, их различные связи и переплетения получают отображение в понятиях пространств соответствующего числа измерений. Определенная система отношений реализуется, как было показано выше, и в понятии кривизны. Как Евклидова, так и различные типы неевклидовых геометрий допускают построение моделей с любым числом измерений; другими словами, количество таких моделей неограниченно.