Легко догадаться, что последовательность расположения нуклеотидов в гене ДНК определяет последовательность аминокислот в белке. Но поскольку аминокислот двадцать, а нуклеотидов всего четыре, каждую из аминокислот должна определять или, как говорят, кодировать последовательность нескольких нуклеотидов. Двух для этого недостаточно — из четырех нуклеотидов можно составить только 16 различных комбинаций по два. Комбинаций из четырех нуклеотидов по три можно составить целых 64. Промежуточного не дано — число нуклеотидов может быть только целым. Такая система кодирования — «генетический код» является избыточной. Тем не менее, этот код получил надежное экспериментальное подтверждение. Что же касается его избыточности, то ей в нашем рассмотрении еще предстоит сыграть свою важную роль.
Последовательность нуклеотидов в гене «прочитывает», двигаясь вдоль него, уже знакомая нам РНК-полимераза. Результатом такого прочтения является синтез однонитевой РНК-копии гена. Ее называют «информационной РНК». Поскольку одной аминокислоте соответствует три нуклеотида гена, то информационная РНК не может быть очень длинной. Даже если белок состоит из тысячи аминокислот, его ген и соответствующая информационная РНК должны иметь всего лишь по три тысячи нуклеотидов.
РНК-полимераза начинает «чтение» гена с его начала. Это начало определяет особая последовательность нуклеотидов. Поскольку начало считывания гена фиксировано, все стоящее далее вплотную друг к другу множество нуклеотидов образует кодирующие тройки (их именуют «кодонами») единственным образом. А следовательно, они определяют единственную, вполне определенную последовательность аминокислот. Иными словами, обеспечивается синтез единственного белка, структура которого строго соответствует информации, закодированной в данном гене.
По окончании копирования гена РНК-полимераза и синтезированная ею информационная РНК покидают ДНК. Сам синтез белков происходит совсем в других местах клетки — в относительно крупных структурах, именуемых «рибосомами». Информационная РНК доставляет к рибосоме, как мы видели, информацию на синтез определенного белка в виде последовательности трехчленных кодонов. Одновременно к той же рибосоме должны одна за другой подаваться необходимые аминокислоты. Эту функцию выполняет особый класс рибонуклеиновых кислот, так называемые «транспортные» РНК. Они совсем короткие — порядка 80 нуклеотидных звеньев. Поскольку основное внимание в последующем изложении будет уделено именно транспортным РНК, я их ради экономии места буду обозначать сокращенно — «тРНК». Многочисленные и разнообразные тРНК вместе с аминокислотами и рибосомами находятся в клеточном соке (цитоплазме) клетки. Каждая из тРНК специализирована на доставке какой-нибудь одной определенной аминокислоты. Специальный фермент «узнает» молекулу тРНК и присоединяет химической связью к одному из ее концов именно эту аминокислоту (таких ферментов должно быть, как минимум 20). тРНК если и не сворачивается в клубок, то определенным образом складывается в довольно компактную структуру. Причем так, что в месте сгиба, лежащем примерно посередине цепочки тРНК, образуется свободная петля, которая выносит на поверхность три стоящих подряд нуклеотида. Они должны «узнать» кодон. Их совокупность именуется антикодоном. «Узнавание» означает, что все три пары стоящих друг против друга нуклеотидов кодона и антикодона окажутся «комплементарными». Этот термин означает, что каждая пара представляет собой одну из только двух возможных, благодаря пространственному соответствию, комбинаций: А-У или Г-Ц (в двунитевой ДНК комплементарность определяется парами: А-Т и Г-Ц).
Если узнавание кодона антикодоном произошло, ферментная система, связанная с рибосомой, снимает с конца тРНК принесенную ею «правильную» аминокислоту. Затем присоединяет ее химической связью к растущей на особом участке рибосомы белковой цепи. После чего освобожденная от аминокислоты тРНК возвращается в цитоплазму. А информационная РНК продвигается относительно рибосомы сразу на три нуклеотида и таким образом помещает в «место узнавания» следующий кодон. Затем новая тРНК, способная «узнать» этот новый кодон, ставит в цепь белка следующую аминокислоту. И так далее — до окончания синтеза полноценного белка, покидающего рибосому. Этот момент тоже определяется специальным «концевым» кодоном. Их имеется (для надежности?) целых три. Так что для кодирования 20 аминокислот из 64 возможных остается только 61 кодон. Очевидно, что тРНК различной специализации должно быть не менее 20, по числу аминокислот.