Читаем Технологический расчет нефтяных процессов и аппаратов методом конечных элементов полностью

Система уравнений из приведенных выше уравнений гидродинамики расширяется дифференциальными уравнениями химической кинетики или процессов тепломассообмена. Затем эта система решается методом конечных объемов (численным методом) в узлах расчетной сетки аналогично тому, как в этих узлах может решаться исходная система уравнений гидродинамики.

<p>1 Теория гидродинамики</p>

Из теоретической гидродинамики используются уравнения, из которых составляется система. Затем эта система уравнений может быть дополнена дифференциальными уравнениями теплообмена, массообмена, химической гидродинамики. Система решается численным методом в узлах сетки.

В гидродинамике описание движения потока жидкости производится описанием вектора скорости и двух термодинамических величин (давление и плотность) в зависимости от координат и времени. Система уравнений должна содержать 5 уравнений, в том числе уравнение неразрывности, уравнение Навье-Стокса (уравнение Эйлера для идеальной жидкости), уравнение переноса тепла (уравнение сохранения энтропии для идеальной жидкости).

– уравнение неразрывности потока:

– уравнение Навье-Стокса

для сжимаемой жидкости (уравнение движения вязкой среды):

для несжимаемой жидкости при :

– уравнение переноса тепла

Закон сохранения для идеальной жидкости (при отсутствии вязкости и теплопроводности правая часть уравнения становится равной нулю и получится уравнение сохранения энтропии):

Уравнения Навье-Стокса в настоящее время решены для нескольких простых случаев, например, течения Пуазейля, течения Куэта.

Анри Навье вывел уравнения используя представления, то есть расчетную модель, о молекулярных взаимодействиях. Эта модель не отражает картины турбулентного потока, предложенной Колмогоровым и указанной справедливой Ландау.

Академик А.Н. Колмогоров записал уравнения для турбулентного движения [11]:

По модели Колмогорова А.Н. Колмогоров в работе [2,с.294] происходит наложение на осредненный поток различных по масштабу турбулентных пульсаций. Наибольшим масштабом является масштаб L пути перемешивания, наименьшим масштабом является масштаб λ, на котором вязкость уже оказывает влияние. Пульсации передаются от крупного масштаба L к меньшим и на самом низком масштабе λ происходит рассеяние энергии за счет вязкости.

<p>2 О решении уравнений Навье-Стокса для пространства R3 в постановке математического института Клея</p>

В работе Ефанова [12] показана попытка доказательства невозможности решения уравнений Навье-Стокса.

Для этого Ефановым рассмотрены расчетные модели и применена теорема Курта Геделя о неполноте непротиворечивых систем.

Применяя эту теорему, модель Колмогорова включает в себя представления Анри Навье и является расширенной системой по отношению к расчетной модели Анри Навье.

И следовательно, средствами базовой системы нельзя получить решение для расширенной системы.

А. Эйнштейн, А.Н. Колмогоров (в кн. «О профессии математика») писали, что теория строится на гипотезах, наглядных представления. Конкретно сопоставление основания уравнений Навье-Стокса с возможностью их решения выполнено К.В. Ефановым и указано о большем обосновании модели Колмогорова и отсутствие решения уравнений Навье-Стокса, применительно к пространству R3.

Точное решение численным методом DNS уравнений Навье-Стокса приводит в интегральному масштабу L, который похож на масштаб L в модели Колмогорова. И именно по этой причине возможно решение методом DNS уравнений Навье-Стокса. Однако, это решение теоретически строго не корректно, так как требуется решать уравнения, составленные на модели Колмогорова, но не на представлениях Анри Навье о молекулярных взаимодейсвтиях.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки