Система уравнений из приведенных выше уравнений гидродинамики расширяется дифференциальными уравнениями химической кинетики или процессов тепломассообмена. Затем эта система решается методом конечных объемов (численным методом) в узлах расчетной сетки аналогично тому, как в этих узлах может решаться исходная система уравнений гидродинамики.
1 Теория гидродинамики
Из теоретической гидродинамики используются уравнения, из которых составляется система. Затем эта система уравнений может быть дополнена дифференциальными уравнениями теплообмена, массообмена, химической гидродинамики. Система решается численным методом в узлах сетки.
В гидродинамике описание движения потока жидкости производится описанием вектора скорости и двух термодинамических величин (давление и плотность) в зависимости от координат и времени. Система уравнений должна содержать 5 уравнений, в том числе уравнение неразрывности, уравнение Навье-Стокса (уравнение Эйлера для идеальной жидкости), уравнение переноса тепла (уравнение сохранения энтропии для идеальной жидкости).
– уравнение неразрывности потока:
– уравнение Навье-Стокса
для сжимаемой жидкости (уравнение движения вязкой среды):
для несжимаемой жидкости при
– уравнение переноса тепла
Закон сохранения для идеальной жидкости (при отсутствии вязкости и теплопроводности правая часть уравнения становится равной нулю и получится уравнение сохранения энтропии):
Уравнения Навье-Стокса в настоящее время решены для нескольких простых случаев, например, течения Пуазейля, течения Куэта.
Анри Навье вывел уравнения используя представления, то есть расчетную модель, о молекулярных взаимодействиях. Эта модель не отражает картины турбулентного потока, предложенной Колмогоровым и указанной справедливой Ландау.
Академик А.Н. Колмогоров записал уравнения для турбулентного движения [11]:
По модели Колмогорова А.Н. Колмогоров в работе [2,с.294] происходит наложение на осредненный поток различных по масштабу турбулентных пульсаций. Наибольшим масштабом является масштаб L пути перемешивания, наименьшим масштабом является масштаб λ, на котором вязкость уже оказывает влияние. Пульсации передаются от крупного масштаба L к меньшим и на самом низком масштабе λ происходит рассеяние энергии за счет вязкости.
2 О решении уравнений Навье-Стокса для пространства R3 в постановке математического института Клея