Читаем Тени разума. В поисках науки о сознании полностью

Какие же научные последствия может иметь допущение, что математические суждения мы получаем в результате выполнения некоей необходимой и непостижимой алгоритмической процедуры? Вырисовывается приблизительно такая картина: исключительно сложные алгоритмические процедуры, необходимые для моделирования подлинного математического понимания, являются результатом многих сотен тысяч лет (по меньшей мере) естественного отбора вкупе с несколькими тысячами лет воздействия обучения и внешних факторов, обусловленных физическим окружением. Можно допустить, что наследуемые аспекты этих процедур формировались постепенно из более простых (ранних) алгоритмических компонентов в результате того же давления естественного отбора, которое ответственно за возникновение всех остальных в высшей степени эффективных механизмов, из которых составлены как наши тела, так и наши мозги. Врожденные потенциально математические алгоритмы (т.е. все те унаследованные аспекты, которые могли бы относиться к математическому мышлению, предположительно алгоритмическому) до поры пребывали в закодированном состоянии (в виде неких особых последовательностей нуклеотидов) внутри молекул ДНК, а затем проявились посредством той же процедуры, какая задействуется при всяком постепенном (либо скачкообразном) усовершенствовании живого организма, реагирующего на давление отбора. Помимо прочего, свой вклад в эти процессы вносят и всевозможные внешние факторы — такие как непосредственное математическое образование, опыт взаимодействия с физическим окружением, прочие факторы, оказывающие дополнительно самые разные чисто случайные воздействия. Думаю, мы должны попытаться выяснить, можно ли полагать описанную картину хоть сколько-нибудь правдоподобной?

3.7. Алгоритм или алгоритмы?

Прежде всего, необходимо рассмотреть следующий весьма важный вопрос: может ли оказаться, что за различные виды математического понимания, свойственные разным людям, отвечает множество весьма различных, возможно, неэквивалентных алгоритмов? В самом деле, уж в чем мы можем быть с самого начала уверены, так это в том, что даже профессиональные математики часто воспринимают математические «реалии» совершенно по-разному. Для одних в высшей степени важны зрительные образы, тогда как другим удобнее иметь дело с четкими логическими структурами, изящными абстрактными доказательствами, подробными аналитическими обоснованиями или, возможно, чисто алгебраическими манипуляциями. В этой связи следует отметить, что, по некоторым предположениям, геометрическое, например, и аналитическое мышление осуществляются разными полушариями мозга (соответственно, правым и левым){44}. Однако часто бывает так, что всеми этими способами воспринимается одна и та же математическая истина. С алгоритмической точки зрения первое впечатление таково: алгоритмы, отвечающие за математическое мышление различных людей, должны быть как минимум абсолютно неэквивалентными. Однако, несмотря на существенное различие между образами, которые формируют в сознании отдельные математики (или прочие смертные) для собственного понимания или для сообщения другим математических идей, математическое восприятие обладает одним поразительным свойством: когда математики наконец решают для себя, что именно следует считать неопровержимо истинным, никаких разногласий по этому поводу больше не возникает, разве что поводом для такого разногласия послужит какая-либо действительная, опознаваемая (а следовательно, и исправимая) ошибка в рассуждениях того или иного математика (еще один возможный повод для разногласий предоставляет принципиальное расхождение во мнениях по некоторым — весьма немногочисленным — фундаментальным вопросам; см. комментарий к Q11, в особенности утверждение G***). В целях упрощения изложения я позволю себе в дальнейшем последнее соображение проигнорировать. Хотя это соображение и имеет некоторое отношение к предмету нашего разговора, на выводы оно заметного влияния не оказывает. (Придерживаемся ли мы нескольких возможных неэквивалентных точек зрения на какой-то вопрос или все соглашаемся на одной — существенного различия между этими двумя ситуациями в данном случае нет.)

Восприятие математической истины может осуществляться самыми различными способами. Вряд ли можно усомниться в том, что вне зависимости от конкретной природы физических процессов, обусловливающих осознание человеком истинности какого-либо математического утверждения, эти процессы должны весьма и весьма разниться от индивидуума к индивидууму, даже если речь идет об одном и том же утверждении. Иначе говоря, если математики при составлении суждений о неопровержимой истинности того или иного утверждения просто-напросто применяют какие-то вычислительные алгоритмы, то у разных математиков эти самые алгоритмы должны весьма значительно различаться по своей структуре. При этом упомянутые алгоритмы должны быть еще и эквивалентны друг другу в некотором очевидном смысле.

Перейти на страницу:

Похожие книги

Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан
Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан

В книгу вошли одни из самых известных произведений английского философа Томаса Гоббса (1588-1679) – «Основы философии», «Человеческая природа», «О свободе и необходимости» и «Левиафан». Имя Томаса Гоббса занимает почетное место не только в ряду великих философских имен его эпохи – эпохи Бэкона, Декарта, Гассенди, Паскаля, Спинозы, Локка, Лейбница, но и в мировом историко-философском процессе.Философ-материалист Т. Гоббс – уникальное научное явление. Только то, что он сформулировал понятие верховенства права, делает его ученым мирового масштаба. Он стал основоположником политической философии, автором теорий общественного договора и государственного суверенитета – идей, которые в наши дни чрезвычайно актуальны и нуждаются в новом прочтении.

Томас Гоббс

Философия