М. И. К.
: (А. И.
: Так мы снова возвращаемся к тому же парадоксу, только на этот раз в более сильной форме. Теперь у нас естьМ. И. К.
: Роботы не могут быть нелогичными. Π1-высказываниеА. И.
: Повторяю уже в который раз: именно эти механизмы и никакие другие. Хотя я согласен с тем, что у роботов нет никакого способа узнать наверняка, правда ли это. Это-то знание и позволяетМ. И. К.
: МожешьА. И.
: Тем не менее, неуверенность в отношении процедур, лежащих в основе твоей конструкции, должна, я думаю, вызвать у тебя некоторые сомнения. Уверен ли ты, что знаешь наверняка, как именно поведут себя твои роботы во всех возможных обстоятельствах? Вини нас, если угодно, однако я бы на твоем месте предположил, что некоторый элемент неопределенности в утверждении «все ☆-утверждаемые краткие Π1-высказывания непременно истинны» все же присутствует, потому хотя бы, что ты не веришь, что мы при твоем конструировании ничего не напутали.М. И. К.
: Думаю, можно согласиться с тем, что ваша неизбежная ненадежность и внесла изначально какую-то малую неопределенность; однако, учитывая то, что с тех пор мы ушли чрезвычайно далеко от тех твоих неуклюжих исходных процедур, эта неопределенность не настолько значительна, чтобы воспринимать ее всерьез. Даже если собрать вместе все неопределенности, связанные со всеми краткими ☆-утверждениями (число которых, если помнишь, является конечным), они не составят сколько-нибудь существенной неопределенности в утверждении