Читаем Тени разума. В поисках науки о сознании полностью

последним данным квантовой теории), предпочитает следовать Вселенная, далеко не столь прямолинейны. Если бы состояние |ψ〉 можно было счесть полностью независимым и от |α〉, и от |β〉, то тогда его присутствие и в самом деле ничего бы не меняло. Однако формально полной независимости здесь быть не может, и состояние даже пребывающего на Луне фотона оказывает самое непосредственное воздействие на состояние фотона, регистрируемого нашим фотоэлементом[40]. (С этими формальностями связано, в частности, то, что под обозначением «|ψ〉|α〉» мы подразумеваем произведение грассманова типа — если использовать более привычные термины, то речь тут идет о так называемой «статистике Бозе» (описание состояний фотонов и прочих бозонов) или о «статистике Ферми» (описание состояний фермионов — электронов, протонов и т.д.), см. НРК, с. 277, 278 и, скажем, [94].) Если бы перед нами стояла задача получить абсолютно точный с точки зрения теории результат, то рассмотрение состояния одного-единственного фотона потребовало бы учета состояний всех фотонов во Вселенной. Впрочем, необходимости в этом (к счастью) нет — и без такого учета точность получаемых результатов хоть и не абсолютна, но все же чрезвычайно высока. Если состояния |α〉 и |β〉 ортогональны, то можно с очень высокой степенью точности предположить, что ортогональными будут и состояния |ψ〉|α〉 и |ψ〉|β〉 (даже если это произведения грассманова типа), где |ψ〉 — любое состояние, не имеющее очевидного отношения к рассматриваемой задаче (каковая задача непосредственно касается лишь ортогональных состояний |α〉 и |β〉). Так и предположим.

5.17. Квантовая сцепленность

Для того чтобы двигаться дальше, нам не обойтись без понимания квантовой физики ЭПР-эффектов — квантовомеханических Z-загадок, ярким представителем которых является представленная мною выше задача о магических додекаэдрах (см. §§5.3, 5.4). Кроме того, мы должны как-то разобраться с главной X-загадкой квантовой теории — парадоксальной взаимозависимостью между процессами эволюции U и редукции R, загадкой, порождающей проблему измерения, о которой мы поговорим в следующей главе. Следовательно, настала пора ввести очередную фундаментальную квантовую идею — понятие о сцепленных состояниях.

Начнем с того, что попытаемся выяснить, что включает в себя простой процесс измерения. Рассмотрим следующую ситуацию: фотон находится в суперпозиции, скажем, |α〉 + |β〉, где в состоянии |α〉 фотон активирует детектор, в состоянии же |β〉, ортогональном |α〉, фотон никакого воздействия на детектор не оказывает. (Похожий пример рассматривался в §5.8, когда на детектор, расположенный в точке G, падал фотон, пребывающий в состоянии —|F〉 - i|G〉. В состоянии |G〉 фотон активировал детектор, в состоянии |F〉 никакого воздействия на детектор не происходило.) Предположим далее, что детектору тоже можно сопоставить некое квантовое состояние, скажем, |Ψ〉. Вообще говоря, в квантовой теории это обычная практика. Лично мне не совсем ясно, какой может быть смысл в придании квантовомеханического описания объекту классического уровня, однако в дискуссиях на эту тему подобные вопросы, как правило, никого не занимают. Как бы то ни было, мы, думаю, можем согласиться с тем, что те элементы детектора, с которыми фотон сталкивается прежде всего, и в самом деле допускают рассмотрение согласно стандартным правилам квантовой теории. Поэтому, если у вас возникают какие-либо сомнения относительно правомерности применения этих правил ко всему детектору (как к целому), вы можете считать, что вектор состояния |Ψ〉 описывает поведение именно совокупности элементов квантового уровня (частиц, атомов, молекул), что принимают на себя, так сказать, первый удар.

В момент, непосредственно предшествующий столкновению фотона (или, точнее, |α〉-части волновой функции фотона) с детектором, физическое состояние системы объединяет в себе состояние детектора и состояние фотона, т.е. имеет вид |Ф)(|α〉 + |β〉), а нам известно, что

|Ψ〉(|α〉 + |β〉) = |Ψ〉|α〉 + |Ψ〉|β〉.

Таким образом, мы имеем дело с суперпозицией состояния |Ψ〉|α〉, описывающего детектор (элементы детектора) и приближающийся к нему фотон, и состояния |Ψ〉|β〉, описывающего детектор (элементы детектора) и фотон, находящийся где-то в другом месте. Предположим далее, что состояние |Ψ〉|α〉 (детектор с приближающимся к нему фотоном) переходит, согласно шрёдингеровой эволюции U, в некоторое новое состояние |ΨД〉 (детектор регистрирует результат ДА) — в силу возникающих при столкновении взаимодействий между фотоном и элементами детектора. Предположим также, что если фотон с детектором не сталкивается, то под действием U состояние детектора |Ψ〉 эволюционирует (индивидуально) в состояние |ΨН〉 (детектор регистрирует НЕТ), а состояние |β〉 — в состояние |β'〉. Тогда, согласно свойствам шрёдингеровой эволюции, рассмотренным в предыдущем параграфе, общее состояние системы принимает вид

Перейти на страницу:

Похожие книги

Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан
Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан

В книгу вошли одни из самых известных произведений английского философа Томаса Гоббса (1588-1679) – «Основы философии», «Человеческая природа», «О свободе и необходимости» и «Левиафан». Имя Томаса Гоббса занимает почетное место не только в ряду великих философских имен его эпохи – эпохи Бэкона, Декарта, Гассенди, Паскаля, Спинозы, Локка, Лейбница, но и в мировом историко-философском процессе.Философ-материалист Т. Гоббс – уникальное научное явление. Только то, что он сформулировал понятие верховенства права, делает его ученым мирового масштаба. Он стал основоположником политической философии, автором теорий общественного договора и государственного суверенитета – идей, которые в наши дни чрезвычайно актуальны и нуждаются в новом прочтении.

Томас Гоббс

Философия