Читаем Тени разума. В поисках науки о сознании полностью

Наиболее известная форма теоремы Гёделя гласит, что формальная система F (достаточно обширная) не может быть одновременно полной и непротиворечивой. Это не совсем та знаменитая «теорема о неполноте», которую Гёдель первоначально представил на конференции в Кенигсберге (см. §§2.1 и 2.7), а ее несколько более сильный вариант, который был позднее получен американским логиком Дж. Баркли Россером (1936). По своей сути, первоначальный вариант теоремы Гёделя оказывается эквивалентен утверждению, что система F не может быть одновременно полной и ω-непротиворечивой. Условие же ω-непротиворечивости несколько строже, нежели условие непротиворечивости обыкновенной. Для объяснения его смысла нам потребуется ввести некоторые новые обозначения. В систему обозначений формальной системы F необходимо включить символы некоторых логических операций. Нам, в частности, потребуется символ, выражающий отрицание («не»); можно выбрать для этого символ «~». Таким образом, если Q есть некое высказывание, формулируемое в рамках F, то последовательность символов ~ Q означает «не Q». Нужен также символ, означающий «для всех [натуральных чисел]» и называемый квантор общности; он имеет вид «∀». Если P(n) есть некое высказывание, зависящее от натурального числа n (т.е. P представляет собой так называемую пропозициональную функцию), то строка символов ∀n[P(n)] означает «для всех натуральных чисел n высказывание P(n) справедливо». Например, если высказывание P(n) имеет вид «число n можно выразить в виде суммы квадратов трех чисел», то запись ∀n[P(n)] означает «любое натуральное число является суммой квадратов трех чисел», — что, вообще говоря, ложно (хотя, если мы заменим «трех» на «четырех», то это же утверждение станет истинным). Такие символы можно записывать в самых различных сочетаниях; в частности, строка символов

~ ∀n[P(n)]

выражает отрицание того, что высказывание P(n) справедливо для всех натуральных чисел n.

Условие же ω-непротиворечивости гласит, что если высказывание ~ ∀n[P(n)] можно доказать с помощью методов формальной системы F, то это еще не означает, что в рамках этой самой системы непременно доказуемы все утверждения

P(0), P(1), P(2), P(3), P(4), ….

Отсюда следует, что если формальная система F не является ω-непротиворечивой, мы оказываемся в аномальной ситуации, когда для некоторого P оказывается доказуемой истинность всех высказываний P(0), P(1), P(2), P(3), P(4), …; и одновременно с этим можно доказать и то, что не все эти высказывания истинны! Безусловно, ни одна заслуживающая доверия формальная система подобного безобразия допустить не может. Поэтому если система F является обоснованной, то она непременно будет и ω-непротиворечивой.

В дальнейшем утверждения «формальная система F является непротиворечивой» и «формальная система F является ω-непротиворечивой» я буду обозначать, соответственно, символами «G(F)» и «Ω(F)». В сущности (если полагать систему F достаточно обширной), сами утверждения G(F) и Ω(F) формулируются как операции этой системы. Согласно знаменитой теореме Гёделя о неполноте, утверждение Ω(F) не является теоремой системы F (т.е. его нельзя доказать с помощью процедур, допустимых в рамках системы F); не является теоремой и утверждение Ω(F) — если, разумеется, система F действительно непротиворечива. Несколько более строгий вариант теоремы Гёделя, сформулированный позднее Россером, гласит, что если система F непротиворечива, то утверждение ~ G(F) также не является теоремой этой системы. В оставшейся части этой главы я буду формулировать свои доводы не столько исходя из утверждения Ω(F), сколько на основе более привычного нам G(F), хотя для большей части наших рассуждений в равной степени сгодится любое из них. (В некоторых наиболее явных аргументах главы 3 я буду иногда обозначать через «G(F)» конкретное утверждение «вычисление Ck(k) не завершается» (см. §2.5); надеюсь, никто не сочтет это слишком большой вольностью с моей стороны.)

Перейти на страницу:

Похожие книги

Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан
Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан

В книгу вошли одни из самых известных произведений английского философа Томаса Гоббса (1588-1679) – «Основы философии», «Человеческая природа», «О свободе и необходимости» и «Левиафан». Имя Томаса Гоббса занимает почетное место не только в ряду великих философских имен его эпохи – эпохи Бэкона, Декарта, Гассенди, Паскаля, Спинозы, Локка, Лейбница, но и в мировом историко-философском процессе.Философ-материалист Т. Гоббс – уникальное научное явление. Только то, что он сформулировал понятие верховенства права, делает его ученым мирового масштаба. Он стал основоположником политической философии, автором теорий общественного договора и государственного суверенитета – идей, которые в наши дни чрезвычайно актуальны и нуждаются в новом прочтении.

Томас Гоббс

Философия