Читаем Тени разума. В поисках науки о сознании полностью

Читатели, которые знакомы с понятием канторовых трансфинитных ординалов, несомненно, узнают индексы, обычно используемые для обозначения таких чисел. Тем же, кто от подобных вещей далек, не стоит беспокоиться из-за незнания точного значения этих символов. Достаточно сказать, что описанную процедуру «гёделизации» можно продолжить и далее: мы получим формальные системы Fω4, Fω5, …, после чего придем к еще более обширной системе Fωω, затем процесс продолжается до еще больших ординалов, например, ωωω и т.д. — до тех пор, пока мы все еще способны на каждом последующем этапе понять, каким образом систематизировать все множество гёделизаций, которые мы получили на данный момент. В этом и заключается основная проблема: для упомянутых нами «усилий, трудов и напряжений» требуется соответствующее понимание того, как должно систематизировать предыдущие гёделизаций. Эта систематизация выполнима при условии, что достигаемый к каждому последующему моменту этап будет помечаться так называемым рекурсивным ординалом, что, в сущности, означает, что должен существовать определенный алгоритм, способный такую процедуру генерировать. Однако алгоритмической процедуры, которую можно было бы заложить заранее и которая позволила бы выполнить описанную систематизацию для всех рекурсивных ординалов раз и навсегда, просто-напросто не существует. Нам снова неизбежно потребуется понимание.

Вышеприведенная процедура была впервые предложена Аланом Тьюрингом в его докторской диссертации (а опубликована в [368]){36}; там же Тьюринг показал, что любое истинное Π1-высказывание можно, в некотором смысле, доказать с помощью многократной гёделизаций, подобной описанной нами. (См. также [117].) Впрочем, воспользоваться этим для получения механической процедуры установления истинности Π1-высказываний нам не удастся по той простой причине, что механически систематизировать гёделизацию невозможно. Более того, невозможность «автоматизации» процедуры гёделизаций как раз и выводится из результата Тьюринга. А в §2.5 мы уже показали, что общее установление истинности (либо ложности) Π1-высказываний невозможно произвести с помощью каких бы то ни было алгоритмических процедур. Так что в поисках систематической процедуры, не доступной тем вычислительным соображениям, которые мы рассматривали до настоящего момента, многократная гёделизация нам ничем помочь не сможет. Таким образом, для вывода G возражение Q19 угрозы не представляет.

Q20. Реальная ценность математического понимания состоит, безусловно, не в том, что благодаря ему мы способны выполнять невычислимые действия, а в том, что оно позволяет нам заменить невероятно сложные вычисления сравнительно простым пониманием. Иными словами, разве не правда, что, используя разум, мы, скорее, «срезаем углы» в смысле теории сложности, а вовсе не «выскакиваем» за пределы вычислимого?

Я вполне готов поверить в то, что на практике интуиция математика гораздо чаще используется для «обхода» вычислительной сложности, чем невычислимости. Как-никак математики по природе своей склонны к лени, а потому зачастую стараются изыскать всяческие способы избежать вычислений (пусть даже им придется в итоге выполнить значительно более сложную мыслительную работу, нежели потребовало бы собственно вычисление). Часто случается так, что попытки заставить компьютеры бездумно штамповать теоремы даже умеренно сложных формальных систем быстро загоняют эти самые компьютеры в ловушку фактически безнадежной вычислительной сложности, тогда как математик-человек, вооруженный пониманием смысла, лежащего в основе правил такой системы, без особого труда получит в рамках этой системы множество интересных результатов{37}.

Перейти на страницу:

Похожие книги

Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан
Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан

В книгу вошли одни из самых известных произведений английского философа Томаса Гоббса (1588-1679) – «Основы философии», «Человеческая природа», «О свободе и необходимости» и «Левиафан». Имя Томаса Гоббса занимает почетное место не только в ряду великих философских имен его эпохи – эпохи Бэкона, Декарта, Гассенди, Паскаля, Спинозы, Локка, Лейбница, но и в мировом историко-философском процессе.Философ-материалист Т. Гоббс – уникальное научное явление. Только то, что он сформулировал понятие верховенства права, делает его ученым мирового масштаба. Он стал основоположником политической философии, автором теорий общественного договора и государственного суверенитета – идей, которые в наши дни чрезвычайно актуальны и нуждаются в новом прочтении.

Томас Гоббс

Философия