Читаем Теорема Гёделя полностью

2. Следующий шаг, как уже говорилось, состоит в доказательстве того факта, что формула G является формально недоказуемой. Доказательство очень похоже на рассуждение, приводящее к парадоксу Ришара, но не подвержено тем возражениям, которые вызывает последнее.

Как мы помним, в парадоксе Ришара фигурирует некоторое число n, связанное с определенным математическим высказыванием. В рассуждении же Гёделя число п связывается с определенной арифметической формулой (которая лишь прелставляет метаматематическое высказывание). Таким образом, в теореме Гёделя в отличие от парадокса Ришара идет речь о некотором арифметическом свойстве чисел (задается вопрос, обладает ли число sub(n, 3, n) свойством, выражаемым формулой «∀ x ~ Dem(x, sub(n, 13, n))»), а не о метаматематическом, благодаря чему и не возникает дискредитирующего парадокса Ришара смешения высказывания на языке арифметики с высказыванием об арифметике.

Ход рассуждения относительно несложен. Задача его сводится к тому, чтобы доказать, что если бы формула G была доказуема, то ее формальное отрицание (т. е. формула «~ ∀ x ~ Dem(x, sub(n, 13, n))» также было бы доказуемо, и обратно, если бы отрицание формулы G было доказуемо, то была бы доказуема и сама формула G. Отсюда мы получаем, что формула G доказуема в том и только в том случае, если доказуема формула ~ G.

Это утверждение доказано, строго говоря, не самим Гёделем, а Аж, Б. Россером (1936). Гёдель же получил несколько более слабый результат, позволяющий, впрочем, получить все интересующие нас важные выводы.

Воспроизведем вкратце первую часть рассуждения Гёделя, согласно которой, если G доказуема, то и ~ G доказуема. Пусть G доказуема. Тогда должна существовать последовательность арифметических формул, являющаяся доказательством для G. Пусть гёделевский номер доказательства есть k. В таком случае между этим k и числом sub(n, 13, n), являющимся гёделевским номером G, должно иметь место арифметическое отношение, обозначаемое через «Dem(x, z)», т. е. «Dem(k, sub(n, 13, n)» должна быть истинной арифметической формулой. Можно, однако, показать, что это арифметическое отношение обладает тем свойством, что если оно имеет место для каких- либо двух чисел, то формула, выражающая это обстоятельство, непременно доказуема. Таким образом, формула «Dem(x, sub(n, 13, n))» не только истинна, но и формально доказуема, т. е. является теоремой. Но правила вывода элементарной логики позволяют нам немедленно вывести из этой теоремы формулу «~ ∀ x ~ Dem(x, sub(n, 13, n))». Таким образом, мы вывели из доказуемости формулы G доказуемость ее формального отрицания. Значит, если наша формальная система непротиворечива, то G в ней недоказуема.

Чтобы показать, что доказуемость ~ G влечет доказуемость G, требуется аналогичное, но несколько более громоздкое рассуждение, которое мы не будем пытаться здесь воспроизводить.

Как мы уже отмечали, если и некоторая формула, и ее отрицание выводимы из некоторой системы аксиом, то эта система противоречива (несовместна). Поэтому если аксиомы формализованной системы арифметики совместимы, то ни G, ни ее отрицание не могут быть доказуемыми. Иначе говоря, если наши аксиомы непротиворечивы, то G формально неразрешима в том точном смысле, что ни G, ни ~ G не выводимы из арифметических аксиом.

3. Важность предыдущего заключения не сразу бросается в глаза. Что особенного — можно было бы задать вопрос — в том, что некоторая формула, сформулированная на арифметическом языке, оказалась неразрешимой? Но приходится признать, что из этого результата действительно вытекают чрезвычайно важные выводы. Все дело в том, что, хотя формула G и является недоказуемой, можно, как выясняется, чисто метаматематическим рассуждением установить ее истинность. Иными словами, удается показать, что формула G выражает некоторое (довольно-таки громоздко выражаемое, но тем не менее вполне определенное) свойство, с необходимостью принадлежащее всем натуральным числам (аналогично, скажем, свойству, выражаемому гораздо более простой формулой «∀ x ~ (x + 3 = 2)», интерпретируемой обычно как утверждение, что никакое натуральное число, сложенное с числом 3, не дает в сумме 2).

Перейти на страницу:

Все книги серии НАУКУ — ВСЕМ! Шедевры научно-популярной литературы

Наблюдения и озарения или Как физики выявляют законы природы
Наблюдения и озарения или Как физики выявляют законы природы

Все мы знакомы с открытиями, ставшими заметными вехами на пути понимания человеком законов окружающего мира: начиная с догадки Архимеда о величине силы, действующей на погруженное в жидкость тело, и заканчивая новейшими теориями скрытых размерностей пространства-времени.Но как были сделаны эти открытия? Почему именно в свое время? Почему именно теми, кого мы сейчас считаем первооткрывателями? И что делать тому, кто хочет не только понять, как устроено все вокруг, но и узнать, каким путем человечество пришло к современной картине мира? Книга, которую вы держите в руках, поможет прикоснуться к тайне гениальных прозрений.Рассказы «Наблюдения и озарения, или Как физики выявляют законы природы» написаны человеком неравнодушным, любящим и знающим физику, искренне восхищающимся ее красотой. Поэтому книга не просто захватывает — она позволяет почувствовать себя посвященными в великую тайну. Вместе с автором вы будете восхищаться красотой мироздания и удивляться неожиданным озарениям, которые помогли эту красоту раскрыть.Первая часть книги, «От Аристотеля до Николы Теслы», расскажет о пути развития науки, начиная с утверждения Аристотеля «Природа не терпит пустоты» и эпициклов Птолемея, и до гелиоцентрической системы Коперника и Галилея и великих уравнений Максвелла. Читатель проделает этот огромный путь рука об руку с гениями, жившими задолго до нас.«От кванта до темной материи» — вторая часть книги. Она рассказывает о вещах, которые мы не можем увидеть, не можем понять с точки зрения обыденной, бытовой ЛОГИКИ' о принципе относительности, замедлении времени, квантовании энергии, принципе неопределенности, черных дырах и темной материи. История загадочной, сложной и увлекательной современной физики раскроется перед читателем.Итак, вперед — совершать открытия вместе с гениями!

Марк Ефимович Перельман , Марк Ефимович Перельман

Научная литература / Прочая научная литература / Образование и наука
Людвиг Больцман: Жизнь гения физики и трагедия творца
Людвиг Больцман: Жизнь гения физики и трагедия творца

В настоящей книге рассказывается о жизни и творчестве выдающегося австрийского физика Людвига Больцмана (1844-1906), автора классических исследований по молекулярно-кинетической теории вещества, статистической физике и термодинамике. Книга состоит из трех частей. Первая часть «Диалог», по существу, представляет собой небольшой исторический очерк о физике «добольцмановского» времени — от появления первых научных идей в Древней Греции и последующего развития физики вплоть до середины XIX века. Вторая часть «Монолог» посвящена описанию жизненного пути и творческой деятельности великого физика. Биографические главы перемежаются с анализом научных трудов Больцмана — от самых первых работ до творений, указывающих новые пути развития физики и составляющих фундамент современной науки. Здесь же описывается бескомпромиссная борьба Больцмана за признание справедливости атомного учения. Наконец, третья часть книги — «Триумф» — представляет собой рассказ о победе идей Больцмана, принесших бессмертие имени ученого, об их жизни и развитии в современной физике.Книга рассчитана на широкий круг читателей, интересующихся историей развития физики; может быть полезна студентам и аспирантам физико-математических вузов.

Олег Павлович Спиридонов

Биографии и Мемуары

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное