2. Следующий шаг, как уже говорилось, состоит в доказательстве того факта, что формула G является формально недоказуемой. Доказательство очень похоже на рассуждение, приводящее к парадоксу Ришара, но не подвержено тем возражениям, которые вызывает последнее.
Как мы помним, в парадоксе Ришара фигурирует некоторое число n, связанное с определенным математическим высказыванием. В рассуждении же Гёделя число п связывается с определенной арифметической формулой (которая лишь прелставляет метаматематическое высказывание). Таким образом, в теореме Гёделя в отличие от парадокса Ришара идет речь о некотором арифметическом свойстве чисел (задается вопрос, обладает ли число sub(n, 3, n) свойством, выражаемым формулой «∀ x ~ Dem(x, sub(n, 13, n))»), а не о метаматематическом, благодаря чему и не возникает дискредитирующего парадокса Ришара смешения высказывания на языке арифметики с высказыванием об арифметике.
Ход рассуждения относительно несложен. Задача его сводится к тому, чтобы доказать, что если бы формула G была доказуема, то ее формальное отрицание (т. е. формула «~ ∀ x ~ Dem(x, sub(n, 13, n))» также было бы доказуемо, и обратно, если бы отрицание формулы G было доказуемо, то была бы доказуема и сама формула G. Отсюда мы получаем, что формула G доказуема в том и только в том случае, если доказуема формула ~ G.
Это утверждение доказано, строго говоря, не самим Гёделем, а Аж, Б. Россером (1936). Гёдель же получил несколько более слабый результат, позволяющий, впрочем, получить все интересующие нас важные выводы.
Воспроизведем вкратце первую часть рассуждения Гёделя, согласно которой, если G доказуема, то и ~ G доказуема. Пусть G доказуема. Тогда должна существовать последовательность арифметических формул, являющаяся доказательством для G. Пусть гёделевский номер доказательства есть k. В таком случае между этим k и числом sub(n, 13, n), являющимся гёделевским номером G, должно иметь место арифметическое отношение, обозначаемое через «Dem(x, z)», т. е. «Dem(k, sub(n, 13, n)» должна быть истинной арифметической формулой. Можно, однако, показать, что это арифметическое отношение обладает тем свойством, что если оно имеет место для каких- либо двух чисел, то формула, выражающая это обстоятельство, непременно доказуема. Таким образом, формула «Dem(x, sub(n, 13, n))» не только истинна, но и формально доказуема, т. е. является теоремой. Но правила вывода элементарной логики позволяют нам немедленно вывести из этой теоремы формулу «~ ∀ x ~ Dem(x, sub(n, 13, n))». Таким образом, мы вывели из доказуемости формулы G доказуемость ее формального отрицания. Значит, если наша формальная система непротиворечива, то G в ней недоказуема.
Чтобы показать, что доказуемость ~ G влечет доказуемость G, требуется аналогичное, но несколько более громоздкое рассуждение, которое мы не будем пытаться здесь воспроизводить.
Как мы уже отмечали, если и некоторая формула, и ее отрицание выводимы из некоторой системы аксиом, то эта система противоречива (несовместна). Поэтому если аксиомы формализованной системы арифметики совместимы, то ни G, ни ее отрицание не могут быть доказуемыми. Иначе говоря, если наши аксиомы непротиворечивы, то G формально неразрешима в том точном смысле, что ни G, ни ~ G не выводимы из арифметических аксиом.
3. Важность предыдущего заключения не сразу бросается в глаза. Что особенного — можно было бы задать вопрос — в том, что некоторая формула, сформулированная на арифметическом языке, оказалась неразрешимой? Но приходится признать, что из этого результата действительно вытекают чрезвычайно важные выводы. Все дело в том, что, хотя формула G и является недоказуемой, можно, как выясняется, чисто метаматематическим рассуждением установить ее истинность. Иными словами, удается показать, что формула G выражает некоторое (довольно-таки громоздко выражаемое, но тем не менее вполне определенное) свойство, с необходимостью принадлежащее всем натуральным числам (аналогично, скажем, свойству, выражаемому гораздо более простой формулой «∀ x ~ (x + 3 = 2)», интерпретируемой обычно как утверждение, что никакое натуральное число, сложенное с числом 3, не дает в сумме 2).