Читаем Теорема Гёделя полностью

Значит, если это исчисление непротиворечиво, то как G, так и ~ G не выводимы из аксиом арифметики. Следовательно, если арифметика непротиворечива, то G является формально неразрешимой формулой. Далее Гёдель доказывает (3), что хотя формула G формально недоказуема, она является тем не менее истинной арифметической формулой. Она является истинной в том смысле, что утверждает про каждое натуральное число, что оно обладает некоторым арифметическим свойством, причем свойство это такого рода, что наличие его у каждого натурального числа можно действительно подтвердить посредством прямой проверки (4). Поскольку формула G, будучи истинной, является формально недоказуемой, система аксиом арифметики неполна. Иными словами, из аксиом арифметики нельзя вывести все истинные стремления арифметики. Более того, Гёдель доказал существенную неполноту[19] арифметики: даже если присоединить к ее аксиоматике новые аксиомы, обеспечивающие выводимость истинной формулы G, все равно и для такой пополненной (расширенной) системы можно всегда указать истинную, но формально недоказуемую формулу (5). В заключение Гёдель указал, как построить арифметическую формулу А, представляющую метаматематическое высказывание «Арифметика непротиворечива», и доказал, что формула «АG» формально недоказуема. Из этого следует недоказуемость и самой формулы А. Окончательный вывод: непротиворечивость арифметики нельзя установить посредством рассуждения, представимого в формальном арифметическом исчислении.

Перейдем теперь к более подробному изложению доказательства теоремы Гёделя.

1. Мы уже определили выше формулу «~ Dem(x, z)», представляющую в формальном арифметическом исчислении метаматематическое высказывание: «последовательность формул, имеющая гёделевский номер x, не является доказательством формулы, имеющей гёделевский номер z». Теперь мы доставив перед формулой приставку «∀x», являющуюся формальным аналогом языкового оборота «для всех x» (или «для любого x»), и получим в результате новую формулу «∀ x ~ Dem (x, z)», представляющую в формальной арифметике метаматематическое высказывание: «для любого x последовательность формул, имеющая гёделевский номер x, не является доказательством формулы, имеющей гёделевский номер z». Таким образом, эта новая формула является как раз той формулой формального арифметического исчисления, которая представляет в нем метаматематическое высказывание «формула, имеющая гёделевский номер z, недоказуема», или, что то же: «для формулы с гёделевским номером z нельзя построить доказательство».

Гёдель далее показал, что некоторый частный случай этой формулы является формально недоказуемым. Чтобы получить формулу, мы будем исходить из следующей формулы:

∀ x ~ Dem(x, sub(y, 13, y)) (1)

Эта формула, принадлежащая формальному арифметическому исчислению, представляет некоторое метаматематическое высказывание. Какое же именно? Читатель должен помнить, что выражение «sub(y, 13, y)» обозначает некоторое число, которое есть гёделевский номер формулы, получаемой из формулы, имеющей гёделевский номер у, подстановкой вместо переменной, имеющей гёделевский номер 13, (т. е. переменной y) цифры, обозначающей число у. Отсюда видно, что формула (1) представляет метаматематическое высказывание: «формула, имеющая в качестве гёделевского номера число sub(y, 13, y), недоказуема».

Но так как формула (1) принадлежит арифметическому исчислению, она имеет некоторый гёделевский номер, который можно фактически вычислить. Пусть этим номером является число n. Подставим в (1) вместо переменной, имеющей гёделевский номер 13 (т. е. вместо переменной «y»), цифру, обозначающую это число n. В результате подстановки мы получим некоторую формулу, которую назовем (в честь Гёделя) «G»:

∀ x ~ Dem(x, sub(n, 13, n)). (G)

Формула G и есть тот частный случай формулы (1), который мы хотели построить. Формула G принадлежит арифметическому исчислению и должна иметь некоторый гёделевский номер. Каков же этот номер? Нетрудно показать, что таким номером задается число sub(n, 13, n). В самом деле, вспомним, что sub(n, 13, n) есть гёделевский номер формулы, получаемой из формулы, имеющей гёделевский номер n, подстановкой вместо переменной «y» (имеющей гёделевский номер 13) цифры, обозначающей число п. Но ведь формула G как раз и получена из формулы, имеющей гёделевский номер n (т. е. из формулы (1)), подстановкой цифры для числа n вместо входящей в формулу переменной у. Таким образом, действительно sub(n, 13, n) есть гёделевский номер формулы G.

Однако формула G — арифметическая формула, которая представляет в арифметическом исчислении математическое высказывание

«формула „∀ x ~ Dem(x, sub(n, 13, n))“ недоказуема».

Можно, следовательно, сказать, что формула G утверждает свою собственную недоказуемость.

Перейти на страницу:

Все книги серии НАУКУ — ВСЕМ! Шедевры научно-популярной литературы

Наблюдения и озарения или Как физики выявляют законы природы
Наблюдения и озарения или Как физики выявляют законы природы

Все мы знакомы с открытиями, ставшими заметными вехами на пути понимания человеком законов окружающего мира: начиная с догадки Архимеда о величине силы, действующей на погруженное в жидкость тело, и заканчивая новейшими теориями скрытых размерностей пространства-времени.Но как были сделаны эти открытия? Почему именно в свое время? Почему именно теми, кого мы сейчас считаем первооткрывателями? И что делать тому, кто хочет не только понять, как устроено все вокруг, но и узнать, каким путем человечество пришло к современной картине мира? Книга, которую вы держите в руках, поможет прикоснуться к тайне гениальных прозрений.Рассказы «Наблюдения и озарения, или Как физики выявляют законы природы» написаны человеком неравнодушным, любящим и знающим физику, искренне восхищающимся ее красотой. Поэтому книга не просто захватывает — она позволяет почувствовать себя посвященными в великую тайну. Вместе с автором вы будете восхищаться красотой мироздания и удивляться неожиданным озарениям, которые помогли эту красоту раскрыть.Первая часть книги, «От Аристотеля до Николы Теслы», расскажет о пути развития науки, начиная с утверждения Аристотеля «Природа не терпит пустоты» и эпициклов Птолемея, и до гелиоцентрической системы Коперника и Галилея и великих уравнений Максвелла. Читатель проделает этот огромный путь рука об руку с гениями, жившими задолго до нас.«От кванта до темной материи» — вторая часть книги. Она рассказывает о вещах, которые мы не можем увидеть, не можем понять с точки зрения обыденной, бытовой ЛОГИКИ' о принципе относительности, замедлении времени, квантовании энергии, принципе неопределенности, черных дырах и темной материи. История загадочной, сложной и увлекательной современной физики раскроется перед читателем.Итак, вперед — совершать открытия вместе с гениями!

Марк Ефимович Перельман , Марк Ефимович Перельман

Научная литература / Прочая научная литература / Образование и наука
Людвиг Больцман: Жизнь гения физики и трагедия творца
Людвиг Больцман: Жизнь гения физики и трагедия творца

В настоящей книге рассказывается о жизни и творчестве выдающегося австрийского физика Людвига Больцмана (1844-1906), автора классических исследований по молекулярно-кинетической теории вещества, статистической физике и термодинамике. Книга состоит из трех частей. Первая часть «Диалог», по существу, представляет собой небольшой исторический очерк о физике «добольцмановского» времени — от появления первых научных идей в Древней Греции и последующего развития физики вплоть до середины XIX века. Вторая часть «Монолог» посвящена описанию жизненного пути и творческой деятельности великого физика. Биографические главы перемежаются с анализом научных трудов Больцмана — от самых первых работ до творений, указывающих новые пути развития физики и составляющих фундамент современной науки. Здесь же описывается бескомпромиссная борьба Больцмана за признание справедливости атомного учения. Наконец, третья часть книги — «Триумф» — представляет собой рассказ о победе идей Больцмана, принесших бессмертие имени ученого, об их жизни и развитии в современной физике.Книга рассчитана на широкий круг читателей, интересующихся историей развития физики; может быть полезна студентам и аспирантам физико-математических вузов.

Олег Павлович Спиридонов

Биографии и Мемуары

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное