Проиллюстрируем все эти общие замечания одним элементарным примером. Возьмем первую аксиому исчисления высказываний, являющуюся, кстати, аксиомой и рассматриваемого сейчас логико-арифметического исчисления: «(p ˅ p) ﬤ p». Ее гёделевский номер, равный, как легко убедиться, числу 28 × 311 × 52 × 711^2 × 119 × 138 × 1711 мы обозначим буквой а. Рассмотрим теперь формулу «(p ˅ p)», гёделевский номер которой, равный числу 28 × 311^2 × 52 × 711^2 × 119, обозначим через b. Сформулируем теперь метаматематическое утверждение, гласящее, что формула «(p ˅ p)» есть начальная «подформула» (т. е. часть формулы, сама также являющаяся формулой) выбранной аксиомы. Какой арифметической формуле рассматриваемой формальной системы соответствует это утверждение? Очевидно, что более короткая формула «(p ˅ p)» является начальной подформулой более длинной формулы «(p ˅ p) ﬤ p» в том и только в том случае, если (гёделевский) номер b, соответствующий первой из этих формул, есть делитель (гёделевского) номера a, соответствующего второй формуле. В предположении, что термин «делитель» определен некоторым подходящим образом в формализованной арифметической системе арифметической формулой, однозначным образом соответствующей упомянутому выше метаматематическому утверждению о том, что первая аксиома начинается с подформулы «(p ˅ p)», является формула «b есть делитель a». Более того, если эта последняя формула истинна, т. е. если b действительно является делителем a, то верно и то, что «(p ˅ p)» есть начальная подформула формулы «(p ˅ p) ﬤ p».
Рассмотрим теперь повнимательнее следующее метаматематическое высказывание: «Последовательность формул, имеющая гёделевский номер x, является доказательством формулы, имеющей гёделевский номер z». Высказывание кодируется (изображается) посредством некоторой вполне определенной формулы арифметического исчисления, выражающей некоторое чисто арифметическое отношение между числами x и z. (Некоторое представление о том, насколько сложным является такое отношение, читатель получит, вспомнив приводившийся выше пример, в котором конец доказательства (а не все доказательство!) некоторой формулы, имеющей гёделевский номер, n, получал гёделевский номер k = 2m × 3n. Самый беглый анализ приводит нас к выводу, что здесь вводится вполне определенное, хотя и далеко не простое, арифметическое отношение между k (будем для простоты считать его номером всего доказательства) и n — гёделевским номером заключения этого доказательства.) Мы будем записывать отношение между числами x и z посредством формулы «Dem(x, z)»[15] напоминающей нам самим своим обликом о том метаматематическом утверждении, которому она соответствует (а именно, об утверждении «Последовательность формул, имеющая гёделевский номер x, является доказательством формулы, имеющей гёделевский номер z»).
Читатель должен твердо уяснить себе, что хотя «Dem(x, z)» кодирует некоторое метаматематическое утверждение, сама эта запись является формулой арифметического исчисления. Формула эта в более привычных обозначениях может быть записана в виде f(x, z) = 0, где буква f обозначает некоторый довольно-таки сложный комплекс арифметических операций над числами. Однако эта более привычная запись не «подсказывает» сразу своей метаматематической интерпретации, почему мы и предпочли запись, приведенную в тексте.