Читаем Теорема Гёделя полностью

Скажем, когда мы говорим, что 10 — число пальцев на обеих руках, то мы характеризуем этой фразой некоторое «свойство» множества наших пальцев — свойство, которое, разумеется, «цифрой» никак не назовешь. Но число 10 может записываться как арабскими цифрами: «10», так и римскими цифрами (т. е. прописными латинскими буквами) «X»; эти имена сами по себе, конечно, различны, хотя обозначают они одно и то же число. Так вот, когда мы производим подстановку вместо числовой переменной (которая сама есть просто знак, буква), то мы ставим вместо одного знака другой знак. Мы не можем подставить вместо знака число — ведь число, являющееся некоторым свойством (или, как иногда говорят, понятием), вообще не есть что-то такое, что можно непосредственно нанести на бумагу. Итак, вместо числовой — а лучше сказать, цифровой! — переменной мы подставляем именно цифру (или цифровое выражение, скажем «s0» или «7 + 5»), а не число. Именно поэтому мы выше говорили о подстановке цифры (обозначающей число) y, а не самого числа у в интересующее нас метаматематическое выражение.

Читатель может далее поинтересоваться, какое же число обозначается выражением «sub(y, 13, y)», если формула, имеющая гёделевский номер у, не содержит переменной, имеющей гёделевский номер 13, т. е. попросту, если формула не содержит переменной «y». Скажем, sub(243 000 000, 13, 243 000 000) есть гёделевский номер формулы, полученной из формулы, имеющей гёделевский номер 243 000 000, подстановкой вместо переменной «y» цифры[18] 243 000 000. Выше (с. 85) мы уже выяснили, что 243 000 000 — гёделевский номер формулы «0 = 0», не содержащей переменной «y». Но какая же формула получится из формулы «0 = 0» в результате подстановки вместо не входящей в нее переменной «y» цифры, обозначающей число 243 000 000? Ответ очень простой: раз формула не содержит этой переменной, то и подстановка чисто фиктивная, т. е. такая «подстановка» не меняет формулы, иначе говоря, число, обозначаемое записью «sub(243 000 000, 13, 243 000 000)», есть само число 243 000 000.

Заметим, наконец, что выражение «sub(y, 13, y)» не является формулой нашей арифметической системы в том смысле, в каком, например являются формулами выражения «Ǝ x (x = sy)» или «Dem(x, z)», и вот почему. Выражение «0 = 0» мы называем формулой; такая запись утверждает наличие некоторого отношения между двумя числами, так что имеет смысл ставить вопрос, истинно или ложно это утверждение. Аналогично, когда вместо переменных, входящих в выражение «Dem(x, z)», подставляются некоторые цифры, то получающееся выражение оказывается записью некоторого утверждения (о том, что два числа находятся в некотором отношении), о котором опять-таки имеет смысл ставить вопрос, истинно оно или ложно. То же самое можно сказать и о выражении «Ǝ x (x = sy)».

Что же касается выражения «sub(y, 13, y)», даже если переставить в него вместо «y» какую-нибудь конкретную цифру, то оно все равно не будет ничего утверждать и по этой причине не будет ни истинным, ни ложным. Выражение это лишь обозначает (или называет) некоторое число, характеризующее его как некоторую функцию от других чисел. Итак, выражение «Dem(x, z)» (подобно, например, записям «у = f(x)» или «32 + 42 = 52») есть формула и является схемой (или формой) некоторого утверждения; в отличие от него запись «sub(y, 13, y)» (подобно «f(x)» или «(7 × 5) + 8») является лишь схемой (формой) имени некоторого числа, но не формулой.

<p>7.3. Изложение доказательств</p>

Перейдем, наконец, к описанию идеи самого доказательства теоремы Гёделя. Вначале мы дадим совсем простой его набросок, разделив доказательство на пять основных шагов.

Прежде всего Гёдель показывает (1), как построить арифметическую формулу G, представляющую («кодирующую») метаматематическое высказывание «формула G недоказуема». Иначе говоря, формула G гласит о себе самой, что она недоказуема.

Идея построения такой формулы G по существу заимствована из рассуждения, приводящего к парадоксу Ришара. В этом парадоксе, как мы помним, выражению «ришарово число» сопоставляется некоторое число n, после чего рассматривается предложение «n есть ришарово число». В гёделевском же доказательстве формуле G сопоставляется некоторое число h, причем это делается так, чтобы оно соответствовало предложению «Формула, которой сопоставлено число h, недоказуема». Но затем Гёделю удается показать (2), что формула G доказуема тогда и только тогда, когда доказуемо ее формальное отрицание ~G. И этот шаг доказательства аналогичен соответствующему этому рассуждению в парадоксе Ришара, где доказывается, что п есть ришарово число в том и только в том случае, если п не есть ришарово число. Но если некоторая формула и ее отрицание доказуемы, то арифметическое исчисление, в котором возможны оба доказательства, противоречиво.

Перейти на страницу:

Все книги серии НАУКУ — ВСЕМ! Шедевры научно-популярной литературы

Наблюдения и озарения или Как физики выявляют законы природы
Наблюдения и озарения или Как физики выявляют законы природы

Все мы знакомы с открытиями, ставшими заметными вехами на пути понимания человеком законов окружающего мира: начиная с догадки Архимеда о величине силы, действующей на погруженное в жидкость тело, и заканчивая новейшими теориями скрытых размерностей пространства-времени.Но как были сделаны эти открытия? Почему именно в свое время? Почему именно теми, кого мы сейчас считаем первооткрывателями? И что делать тому, кто хочет не только понять, как устроено все вокруг, но и узнать, каким путем человечество пришло к современной картине мира? Книга, которую вы держите в руках, поможет прикоснуться к тайне гениальных прозрений.Рассказы «Наблюдения и озарения, или Как физики выявляют законы природы» написаны человеком неравнодушным, любящим и знающим физику, искренне восхищающимся ее красотой. Поэтому книга не просто захватывает — она позволяет почувствовать себя посвященными в великую тайну. Вместе с автором вы будете восхищаться красотой мироздания и удивляться неожиданным озарениям, которые помогли эту красоту раскрыть.Первая часть книги, «От Аристотеля до Николы Теслы», расскажет о пути развития науки, начиная с утверждения Аристотеля «Природа не терпит пустоты» и эпициклов Птолемея, и до гелиоцентрической системы Коперника и Галилея и великих уравнений Максвелла. Читатель проделает этот огромный путь рука об руку с гениями, жившими задолго до нас.«От кванта до темной материи» — вторая часть книги. Она рассказывает о вещах, которые мы не можем увидеть, не можем понять с точки зрения обыденной, бытовой ЛОГИКИ' о принципе относительности, замедлении времени, квантовании энергии, принципе неопределенности, черных дырах и темной материи. История загадочной, сложной и увлекательной современной физики раскроется перед читателем.Итак, вперед — совершать открытия вместе с гениями!

Марк Ефимович Перельман , Марк Ефимович Перельман

Научная литература / Прочая научная литература / Образование и наука
Людвиг Больцман: Жизнь гения физики и трагедия творца
Людвиг Больцман: Жизнь гения физики и трагедия творца

В настоящей книге рассказывается о жизни и творчестве выдающегося австрийского физика Людвига Больцмана (1844-1906), автора классических исследований по молекулярно-кинетической теории вещества, статистической физике и термодинамике. Книга состоит из трех частей. Первая часть «Диалог», по существу, представляет собой небольшой исторический очерк о физике «добольцмановского» времени — от появления первых научных идей в Древней Греции и последующего развития физики вплоть до середины XIX века. Вторая часть «Монолог» посвящена описанию жизненного пути и творческой деятельности великого физика. Биографические главы перемежаются с анализом научных трудов Больцмана — от самых первых работ до творений, указывающих новые пути развития физики и составляющих фундамент современной науки. Здесь же описывается бескомпромиссная борьба Больцмана за признание справедливости атомного учения. Наконец, третья часть книги — «Триумф» — представляет собой рассказ о победе идей Больцмана, принесших бессмертие имени ученого, об их жизни и развитии в современной физике.Книга рассчитана на широкий круг читателей, интересующихся историей развития физики; может быть полезна студентам и аспирантам физико-математических вузов.

Олег Павлович Спиридонов

Биографии и Мемуары

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное