Привлекательность индексного инвестирования обусловлена тем, что в долгосрочной перспективе стоимость всех индексов растёт, следовательно, практически гарантируется и рост стоимости индексного портфеля. По этой причине индексные портфели предлагаются многими взаимными фондами в качестве надёжного инвестиционного продукта [1].
Однако активы, входящие в индексные портфели, приобретаются различными инвесторами и в разное время. Как следствие, цена покупки активов одного и того же вида неодинакова. Поэтому идентичные по структуре индексные портфели, как правило, имеют неодинаковые математические ожидания и средние квадратические отклонения доходности.
Способ управления индексным портфелем считается пассивным [1], для которого характерно:
приобретение активов, как правило, на длительный срок;
относительно редкая корректировка структуры портфеля в соответствии с изменениями фондового индекса;
сравнительно низкие транзакционные затраты.
Альтернативой пассивному управлению является активное управление портфелем активов, которое заключается в приложении систематических усилий инвестора для получения результатов, превышающих некоторые показатели индексного портфеля. Активное управление включает процессы поиска неверно оцененных ценных бумаг, их покупку или продажу. Для активного инвестора такие действия открывают потенциальную возможность получить лучшие результаты инвестирования по сравнению с пассивным инвестором. Однако активное управление связано с дополнительными рисками и повышенными транзакционными затратами.
2.4. Фондовый индекс как эталон капитальной доходности
В портфельной теории фондовые индексы используются в качестве эталонов капитальной доходности. В литературе по финансовым инвестициям, (например, в [1, 5]) различают текущую и годовую капитальную доходности актива, портфеля активов и фондового индекса, однако однозначное определение данных понятий отсутствует. Кроме того, корректность способов расчёта определения этих доходностей не очевидна.
Показатели, характеризующие уровень фондового индекса, цену актива или стоимость портфеля активов, представим выборкой вида , где – размер выборки.
Для расчёта текущей капитальной доходности фондового индекса (актива и портфеля активов) в –ый торговый день, применяется формула, которая формально подобна формуле (1.1) [1, 5]
где и – текущий и предыдущий уровень фондового индекса (цена актива или стоимость портфеля активов) соответственно.
Величина по отношению к является текущей, а к величине – предыдущей, поэтому
То есть каждый член выборки значений по умолчанию приравнивается к цене покупки и цене продажи совокупности активов фондового индекса (отдельного актива и портфеля активов). С точки зрения формальной логики подразумевается осуществление инвесторами непрерывной последовательности операций купли/продажи некоторой совокупности активов по ценам, соответствующим . При этом совокупность покупаемых и продаваемых активов должна оставаться одинаковой.
Другими словами инвесторы покупают/продают совокупность активов по цене, соответствующей , и затем покупают/продают эту же совокупность активов по цене, соответствующей . Затем эта же совокупность активов покупается/продаётся по цене, соответствующей уровню и т.д. Таким образом, текущая цена совокупности активов по отношению к является ценой продажи, а по отношению к – ценой покупки этой же совокупности активов.
В действительности последовательность подобных операций является невозможной. Для каждого торгового дня совокупности активов, которые покупаются/продаются на фондовом рынке, не могут быть одинаковыми по естественным причинам. Текущая совокупность покупаемых/продаваемых активов в –ый торговый день по сравнению с предыдущим –ым и последующим –ым торговым днём отличается:
совокупностью инвесторов;
по объёму продаж;
долями активов различных эмитентов в объёме продаж;
структурой активов одного и того же эмитента в объёме продаж.