Рассмотрим процесс расчёта текущей капитальной доходности акции на простейшем примере. Предположим в предшествующий торговый день один инвестор приобрёл совокупность акций одного из эмитентов по курсу , а в текущий торговый день другой инвестор приобрёл другую совокупность акций того же эмитента по курсу . Используя формулу (2.2) и данные о курсах актива и , расчёт величины не представляет особых затруднений.
Однако, во–первых, текущие капитальные доходности совокупностей акций и принципиально не могут быть определены до момента их продажи. Во–вторых, совокупность акций отличается от совокупности акций (в том числе и их владельцами), а разность не является доходом ни одного из инвесторов. В–третьих, в действительности разность характеризует изменение цены акции в –ый торговый день по отношению к –му торговому дню.
Обобщая результаты анализа рассмотренного примера, приходим к выводу, что совокупность значений уровня фондового индекса (курса активов или стоимости портфеля активов) обезличены и не позволяет определить уровни благосостояния инвесторов в начале и конце периода владения активами.
Следовательно, величину некорректно принимать в качестве текущей капитальной доходности фондового индекса (актива или портфеля активов). В [8, с. 52] отношение (2.2) определяется как «относительное изменение», «темп прироста» или «относительный прирост» уровня фондового индекса (цены актива или стоимости портфеля активов), но не связывается с понятием капитальная доходность.
Как следует из приведенной цитаты, временной интервал, продолжительность промежутков времени внутри интервала и конкретные моменты времени оценки ряда значений инвестор выбирает произвольно на интуитивной основе. Поэтому результаты расчётов изменения уровня фондового индекса (цены актива или стоимости портфеля активов), т.е. совокупность значений , у различных инвесторов, как правило, не могут быть одинаковыми.
Далее в [1, с. 882] для оценки годовой капитальной доходности актива, портфеля активов и фондового индекса, предлагается использовать одну из двух формул:
или
здесь – историческая выборка значений уровня фондового индекса (цены актива или стоимости портфеля активов) за один год.
Если инвестор располагает исторической выборкой значений уровня фондового индекса (цены актива или стоимости портфеля активов) за несколько лет, то подобным образом рассчитывают среднегодовую капитальную доходность [5].
Учитывая рассмотренную выше особенность соотношения (2.2), под годовой
Анализ первой формулы позволяет рассчитывать годовое относительное изменение уровня фондового индекса (цены актива или стоимости портфеля активов) на основе двух крайних исторических значений и в выборке. При этом промежуточные значения не принимаются во внимание. Поскольку моменты времени оценки крайних исторических значений и являются случайными и правила их выбора не регламентированы, то величина , вычисленная по первой формуле, зависит исключительно от субъективных предпочтений аналитика. При таком способе вычисления значения полезность его использования в качестве показателя для сравнения активов и портфелей активов относительно фондового индекса представляется сомнительной.