Древнейшие органические микроструктуры имеют возраст около 4 млрд. лет. Вполне вероятно, что они и были протоклетками. Как отмечал К. Фолсом (Folsome, 1982), протоклетки образовались в первобытных водоемах из полимерного материала одновременно с органическими соединениями. А. И. Опарин в качестве модели протоклеток предложил коацерватные капли, состоящие из смеси коллоидных частиц. Этими частицами могли быть неспецифические макромолекулы, связывающие молекулы воды, и при определенных значениях pH среды, концентрации солей и температуры соединяющиеся друг с другом с образованием коацерватных структур. Последние по своим размерам напоминали клетки. Некоторые коацерватные капли могли поглощать какое-либо низкомолекулярное вещество (глюкозу или аминокислоты), а также примитивный катализатор. Тогда внутри капли могли аккумулироваться как субстрат, так и катализатор. Из этого следует, что такие капли могли обладать примитивным метаболизмом, состоящим из одной реакции.
В соответствии с гипотезой А. И. Опарина, капли, наделенные метаболизмом, должны были взаимодействовать с водным окружением и поглощать все новые соединения, включающиеся в структуру капель, что давало возможность их роста. Под действием ряда физических факторов капли могли распадаться на более мелкие. Некоторые из них могли сохранять в себе молекулы катализатора, что способствовало росту и образованию нового поколения капель. Идеи А. И. Опарина получили экспериментальное подтверждение.
С. Фокс и многие другие (см. обзоры: Fox, Dose, 1975; Fox, 1980; Эволюция, 1981) описали структуры, полученные в модельных экспериментах, которые были названы протеиноидами. Протеиноиды представляют собой белковоподобные полимерные молекулы, преимущественно со случайной последовательностью аминокислот, образующиеся при отщеплении одной молекулы воды в расчете на каждую пептидную связь. Протеиноиды в растворе имеют форму сфер диаметром около 10 мкм и напоминают клетки, ограниченные толстой мембраной. Протеиноиды с большой молекулярной массой, иногда превосходящей 10000, содержат до 18 различных аминокислотных остатков и обладают рядом свойств, характерных для белков. Более того, у некоторых протеиноидов обнаружена способность повышать скорость определенных химических реакций, а у других — хотя и слабая, но отчетливая гормональная активность. Эти факты свидетельствуют, что полипептидные цепи с определенной аминокислотной последовательностью могут возникать самопроизвольно при сравнительно простых условиях.
Протеиноиды обладают также функциями узнавания и дискриминации, которые проявляются в избирательном взаимодействии или отсутствии такового. Наконец, несомненный интерес представляют сообщения о связи различных ферментативных активностей с присутствием в протеиноидах молекул различных типов. Так, протеиноиды, содержащие гистидин, характеризуются эстеразной активностью, а протеиноиды, содержащие гем, — пероксидазной. Вместе с тем, как справедливо отмечает С. Фокс (Fox, 1980), между протеиноидными системами и настоящей жизнью лежит пропасть, так как они не могут осуществлять саморепродукцию. Эта трудность интерпретации не преодолена до сих пор.
С. Фокс и его сотрудники (обзоры: Fox, Dose, 1975; Fox, 1980) описали также самоорганизующиеся структуры — микросферы, напоминающие клетки. Эти структуры появлялись, в частности, при медленном охлаждении образовавшихся при повышенной температуре концентрированных растворов протеиноидов.
Авторы полагают, что аминокислоты концентрировались в испаряющихся водоемах под влиянием тепла и потоков лавы или полимеризовались при высыхании под действием солнечных лучей. После дождя протеиноиды, возникшие в результате самосборки, могли образовывать микросферы, в первом приближении напоминающие примитивные клетки. Последние представляли собой популяцию протоклеток, подвергавшихся отбору в соответствии с их каталитическими активностями, необходимыми для первичного обмена веществ. С. Фокс (Fox, 1980) в своем известном обзоре привел подробный перечень свойств протеиноидных макромолекул и микросфер.
Микросферы — довольно однородные сферические капли диаметром около 2 мкм. При определенных значениях pH внешняя граница микросфер могла приобретать структуру, напоминающую мембрану, хотя липиды в микросферах отсутствуют. Микросферы могли распадаться, делиться или почковаться. Почки могли отделяться от основной микросферы и давать начало новому поколению микросфер. При слиянии микросфер, содержащих различные каталитические активности, возникали микросферы, обладающие исходными активностями. Эти наблюдения важны для понимания механизмов возникновения систем с многими функциями и имеют значение для понимания развития «сложной» жизни из элементов. Таким образом, микросферы являются самоорганизующимися системами и представляют собой полезные модели первых примитивных структур, напоминающих клетки. Сам факт, что микросферы и коацерватные капли обладают зачатками метаболизма, позволяет предполагать, что метаболизм мог служить первым этапом формирования жизни.