Читаем Теория струн и скрытые измерения Вселенной полностью

Задача имеет форму теоремы, связывающей топологию комплексных пространств, о которых мы поговорим далее, с их геометрией, или кривизной. Основная идея состоит в следующем. Возьмем некое необработанное топологическое пространство, представляющее собой что-то вроде пустого участка земли, специально расчищенного для предстоящего строительства. Соорудим на нем некую геометрическую структуру, которую впоследствии можно еще и декорировать различными способами. Вопрос, который задал Калаби, хотя и содержит некоторые оригинальные идеи, тем не менее принадлежит к тому типу вопросов, которые очень часто ставятся геометрами, а именно: какие из строго определенных геометрических структур допустимы для заданной топологии или, грубо говоря, для заданной формы объекта?

Рис. 4.1.Геометр Эудженио Калаби (фотография Дирка Феруса)

Ответ на этот вопрос едва ли покажется кому-либо имеющим важное значение для физики. Но посмотрим на него с другой стороны. Гипотеза Калаби касается пространств, имеющих особый тип кривизны, известный как кривизна Риччи, которая вкратце будет описана позже. Как оказалось, кривизна Риччи определенного пространства напрямую зависит от распределения материи в этом пространстве. Пространство, называемое риччи-плоским– кривизна Риччи которого равна нулю, – представляет собой пространство, материя в котором отсутствует. Рассматривая поставленный Калаби вопрос с этой точки зрения, можно увидеть его непосредственную взаимосвязь с общей теорией относительности Эйнштейна: возможно ли существование гравитации во Вселенной, представляющей собой полностью лишенный материи вакуум? Если Калаби прав, то кривизна делает возможной гравитацию даже при отсутствии материи. Калаби сформулировал эту задачу в еще более общей форме, поскольку его гипотеза относилась к пространствам любой возможной размерности, а не только к четырехмерным, лежащим в основе общей теории относительности. Такая формулировка казалась мне наиболее правильной, так как она полностью согласовывалась с моим убеждением о том, что самые глубокие математические идеи в случае их истинности всегда находят применение в физике и должны проявлять себя в природе вообще.

Калаби утверждает, что, когда эта гипотеза впервые пришла ему в голову, «она совершенно не была связана с физическими представлениями. Это была чистая геометрия»[42]. Я не сомневаюсь в истинности его слов. Это утверждение могло бы быть точно так же сформулировано, даже если бы Эйнштейну никогда не приходила в голову идея общей теории относительности. И доказательство этой гипотезы могло бы быть получено, даже если бы теории Эйнштейна не существовало. Впрочем, я уверен, что в то время, когда Калаби сформулировал свою задачу – почти через сорок лет после публикации Эйнштейном его революционных статей, – теория Эйнштейна была уже широко распространена. Едва ли найдется хотя бы один математик, который никогда не размышлял над физическими идеями Эйнштейна, пусть даже без какой-либо определенной цели. К тому времени уравнения Эйнштейна прочно связали искривление пространства и гравитацию, глубоко пустив корни в математику. Можно сказать, что общая теория относительности стала частью коллективного сознания или, наоборот, «коллективного бессознательного», – как сказал бы Юнг.

Безотносительно к тому, сознательно или бессознательно Калаби затрагивал физические проблемы, связь между его гипотезой и вопросами гравитации стала для меня важнейшим побудительным фактором, чтобы приняться за эту работу. Я понял, что доказательство гипотезы Калаби может стать важным шагом на пути к раскрытию какой-то глубокой тайны.

Вопросы, подобные тому, который поставил Калаби, часто формулируют в терминах метрики или геометрии пространства – набора функций, который позволяет определить длину любой траектории в соответствующем пространстве, – с этим понятием мы впервые столкнулись в первой главе. Всякое топологическое пространство способно принимать множество различных форм и, следовательно, обладать множеством всевозможных метрик. Одно и то же топологическое пространство может иметь форму куба, сферы, пирамиды или тетраэдра – геометрических тел, эквивалентных с топологической точки зрения. Вопрос, который затрагивает гипотеза Калаби, относящийся к разновидностям метрики, допустимым в данном пространстве, может быть переформулирован следующим эквивалентным образом: какие из геометрических форм возможны для пространств данной топологии?

Перейти на страницу:

Похожие книги

История инженерной деятельности
История инженерной деятельности

В. В. Морозов, В. И. НиколаенкоИСТОРИЯ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИМинистерство образования и науки УкраиныНациональный технический университет«Харьковский политехнический институт»Курс лекций для студентов всех специальностей дневного и заочного обученияУТВЕРЖДЕНО редакционно-издательским советом университетаХарьков 2007В учебном пособии анализируется содержание инженерной деятельности, рассматривается развитие с древнейших времен для нашего времени.Пособие предназначено для студентов дневной и заочной форм обучения, а также всех, кто интересуется историей развития техники.Історія інженерної діяльності.Курс лекцій для студентів усіх спеціальностей денного та заочного форм навчання – В.В.Морозов, В.І.Ніколаєнко – Харків: НТУ "ХПІ", 2007. – 336 с. – Рос.мовою.В учбовому посібнику аналізується зміст інженерної діяльності, розглядається розвиток техніки з найдавніших часів до сучасності.Посібник призначено для студентів денної та заочної форм навчання, а також для усіх, хто цікавиться історією розвитку техніки.© В.В.Морозов, В.І.Ніколаєнко, 2007 р.

В. В. Морозов , В. И. Николаенко , Виталий Иванович Николаенко , Михаил Давыдович Аптекарь , Султан Курбанович Рамазанов

Технические науки / Учебники и пособия ВУЗов / Образование и наука
Чудо-оружие СССР. Тайны советского оружия
Чудо-оружие СССР. Тайны советского оружия

В XX веке в нашей стране в обстановке строжайшей секретности были созданы уникальные системы вооружения, действие которых иной раз более впечатляло, чем фантастические романы того времени. О некоторых из них и пойдет речь в этой книге. Автор не счел нужным что-либо преувеличивать или недоговаривать. В книге объективно представлены все достоинства, недостатки и перспективы возможного применения того или иного типа оружия. Читатель узнает, как маршал Тухачевский готовился к «войне роботов», как и почему взлетели на воздух дома на Крещатике в сентябре 1941 г., об испытаниях самолета-невидимки и его связи с Филадельфийским экспериментом, об атомных и ракетных секретах Лаврентия и Серго Берия, о работах по созданию флота из летающих лодок с атомными двигателями, способных доставить термоядерные заряды в любую точку земного шара, и о многом другом.

Александр Борисович Широкорад

История / Технические науки / Образование и наука