Читаем Теория струн и скрытые измерения Вселенной полностью

Кроме того, комплексные числа важны для понимания волновых процессов, поскольку комплексная амплитуда содержит информацию не только об амплитуде, но и о фазе волны. Две волны, имеющие одинаковую амплитуду и частоту, могут либо совпадать по фазе, и тогда волны накладываются друг на друга и результирующая волна будет равна их сумме, либо не совпадать – и тогда волны частично или полностью погасят друг друга. Если фаза и амплитуда волны выражены при помощи комплексного числа, то сложение двух волн сводится к сложению или умножению двух комплексных чисел. Выполнить этот расчет без привлечения комплексных чисел также возможно, но он будет намного сложнее, точно так же, как расчет движения планет в Солнечной системе можно произвести и в геоцентрической системе, но уравнения будут проще и изящнее, если поставить в центр физической картины Солнце, роль комплексных чисел в описании волновых процессов сделала их незаменимыми для физики. Так, в квантовой механике каждая элементарная частица может быть представлена в виде соответствующей волны. Квантовая механика в свою очередь является ключевым компонентом разнообразных теорий квантовой гравитации, претендующих на роль так называемых «теорий всего». С этой точки зрения возможность описывать волны при помощи комплексных чисел является заметным преимуществом.

Впервые комплексные числа были задействованы для вычислений в книге итальянского математика Джероламо Кардано, опубликованной в 1545 году. Однако роль комплексной геометрии как значимой дисциплины была признана только спустя три столетия. Человеком, который вывел комплексную геометрию на передний план математики, стал Георг Фридрих Бернхард Риман – архитектор первых подробно исследованных комплексных многообразий – так называемых римановых поверхностей. Эти поверхности приобретут особую важность в теории струн, созданной почти через сто лет после смерти Римана. Когда крошечная замкнутая струна, являющаяся основным элементом теории струн, движется в многомерном пространстве-времени, поверхность, которую она заметает за собой, является римановой. Использование таких поверхностей для расчетов в рамках теории струн сделало их одними из наиболее исследованных поверхностей в современной теоретической физике. Теория римановых поверхностей существенно обогатилась от сотрудничества с теорией струн, поскольку полученные из физического описания уравнения весьма укрепили ее математическую часть.

Римановы поверхности, подобно обычным двухмерным многообразиям, являются гладкими, но из их комплексной природы – они являются одномерными комплексными многообразиями – следует наличие у них дополнительной встроенной структуры. Одна особенность, автоматически следующая из комплексной природы поверхности, но не всегда присущая действительным поверхностям, состоит в том, что все окрестности поверхности связаны друг с другом определенным образом. Спроецировав небольшой фрагмент искривленной римановой поверхности на плоскость и затем проделав ту же операцию для всех окружающих его фрагментов, можно получить карту, похожую на ту, которая получается при изображении трехмерного глобуса в двухмерном географическом атласе мира. Если сделать подобную карту на основе римановой поверхности, то расстояния между различными объектами на этой карте будут искажены, однако углы между ними сохранятся. Та же идея – сохранение углов за счет искажения расстояний – использовалась и на появившихся в XVI столетии картах, основанных на проекции Меркатора, которые представляли земную поверхность не в виде сферы, а в виде цилиндра. Сохранение углов при так называемом конформном отображении земного шара на карте в те времена было необходимо для целей навигации и помогало капитанам кораблей держать выбранный курс. Использование конформного отображения существенно упрощает расчеты, относящиеся к римановым поверхностям, делая возможным для таких поверхностей доказательство многих утверждений, недоказуемых для поверхностей, не являющихся комплексными. Наконец, римановы поверхности, в отличие от обычных многообразий, должны быть ориентируемыми, а это означает, что способ определения направлений – ориентация системы координат – не зависит от местоположения точки на поверхности. Противоположная ситуация имеет место для ленты Мёбиуса – классического примера неориентируемой поверхности, в процессе перемещения по которой направления могут меняться местами – низ становится верхом, левое – правым, направление по часовой стрелке переходит в направление против часовой стрелки.

Перейти на страницу:

Похожие книги

История инженерной деятельности
История инженерной деятельности

В. В. Морозов, В. И. НиколаенкоИСТОРИЯ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИМинистерство образования и науки УкраиныНациональный технический университет«Харьковский политехнический институт»Курс лекций для студентов всех специальностей дневного и заочного обученияУТВЕРЖДЕНО редакционно-издательским советом университетаХарьков 2007В учебном пособии анализируется содержание инженерной деятельности, рассматривается развитие с древнейших времен для нашего времени.Пособие предназначено для студентов дневной и заочной форм обучения, а также всех, кто интересуется историей развития техники.Історія інженерної діяльності.Курс лекцій для студентів усіх спеціальностей денного та заочного форм навчання – В.В.Морозов, В.І.Ніколаєнко – Харків: НТУ "ХПІ", 2007. – 336 с. – Рос.мовою.В учбовому посібнику аналізується зміст інженерної діяльності, розглядається розвиток техніки з найдавніших часів до сучасності.Посібник призначено для студентів денної та заочної форм навчання, а також для усіх, хто цікавиться історією розвитку техніки.© В.В.Морозов, В.І.Ніколаєнко, 2007 р.

В. В. Морозов , В. И. Николаенко , Виталий Иванович Николаенко , Михаил Давыдович Аптекарь , Султан Курбанович Рамазанов

Технические науки / Учебники и пособия ВУЗов / Образование и наука
Чудо-оружие СССР. Тайны советского оружия
Чудо-оружие СССР. Тайны советского оружия

В XX веке в нашей стране в обстановке строжайшей секретности были созданы уникальные системы вооружения, действие которых иной раз более впечатляло, чем фантастические романы того времени. О некоторых из них и пойдет речь в этой книге. Автор не счел нужным что-либо преувеличивать или недоговаривать. В книге объективно представлены все достоинства, недостатки и перспективы возможного применения того или иного типа оружия. Читатель узнает, как маршал Тухачевский готовился к «войне роботов», как и почему взлетели на воздух дома на Крещатике в сентябре 1941 г., об испытаниях самолета-невидимки и его связи с Филадельфийским экспериментом, об атомных и ракетных секретах Лаврентия и Серго Берия, о работах по созданию флота из летающих лодок с атомными двигателями, способных доставить термоядерные заряды в любую точку земного шара, и о многом другом.

Александр Борисович Широкорад

История / Технические науки / Образование и наука