Читаем Теория струн и скрытые измерения Вселенной полностью

Прежде чем приступить непосредственно к обсуждению доказательства данной гипотезы, необходимо для начала разобраться с упоминавшимися ранее понятиями, лежащими в ее основе. Гипотеза Калаби относится только к комплексным многообразиям. Понятие многообразия, как я уже говорил, аналогично понятию поверхности или пространства, но, в отличие от хорошо знакомых нам двухмерных поверхностей, многообразия могут иметь любую четную размерность, не обязательно равную двум. Ограничение по поводу четного значения размерности относится только к комплексным многообразиям, в общем случае многообразие может иметь как четную, так и нечетную размерность. По определению многообразия на малых или локальных участках имеют сходство с евклидовыми пространствами, но в больших, или так называемых глобальных, масштабах они демонстрируют заметное отличие. Так, к примеру, окружность представляет собой одномерное многообразие, и окрестность каждой из лежащей на ней точек можно уподобить отрезку прямой. Но в целом окружность совершенно не похожа на прямую линию. Теперь добавим еще одно измерение. Мы живем на поверхности сферы, которая представляет собой двухмерное многообразие. Взглянув на достаточно малый участок земной поверхности, можно обнаружить, что он имеет практически идеально плоскую форму как диск или фрагмент плоскости, несмотря на то что в целом эта поверхность искривлена и, следовательно, неевклидова. Если теперь выбрать на поверхности участок значительно большего размера, то отклонение от евклидовости станет очевидным, что приведет к необходимости сделать поправки на кривизну.

Одной из важных особенностей многообразий является их гладкость. Это свойство прямо вытекает из их определения, поскольку из сходства каждого малого участка поверхности с евклидовым пространством напрямую следует гладкость поверхности во всех точках. Геометры говорят о гладкости многообразия даже в том случае, если оно имеет некоторое количество «странных» точек, в которых условие локальной евклидовости не выполняется – например, точка пересечения двух линий. Такие точки носят название топологических сингулярностей, поскольку их в принципе невозможно сгладить. Вне зависимости то того, насколько мала выбранная вокруг такой точки окрестность, пересечение все равно останется пересечением.

Подобные вещи постоянно встречаются в римановой геометрии. В начале преобразования объект может быть гладким и простым для исследований, но стоит нам приблизиться к определенному пределу – скажем, постепенно заостряя его форму или срезая углы, – и возникновение сингулярности станет неизбежным. Впрочем, геометры обычно столь либеральны в этом вопросе, что даже пространство, имеющее бесконечно большое число сингулярностей, в их глазах все равно остается многообразием – в этом случае они называют его сингулярным пространством, или сингулярным многообразием, и рассматривают как предельную форму гладкого многообразия. При этом вместо двух линий, пересекающихся в одной точке, чаще рассматривают плоскости, результатом пересечения которых будет линия.

Это и есть грубое определение понятия многообразия. Теперь что касается слова «комплексное». Комплексным называется такое многообразие, каждой точке которого можно сопоставить определенное комплексное число. Подобное число имеет вид a+ ib, где аи b– действительные числа, a i– так называемая мнимая единица, определяемая как квадратный корень из -1. Как и координаты точки на плоскости, которые можно изобразить на графике с двумя осями xи y, одномерные комплексные числа можно изобразить на графике с двумя осями, соответствующими вещественной и мнимой частям.

Комплексные числа полезны по нескольким причинам – прежде всего потому, что они дают возможность извлекать квадратные корни из отрицательных чисел. При помощи комплексных чисел можно решить квадратное уравнение вида ax 2 + bx + c = 0при помощи формулы, которую многие из вас учили в средней школе x= (-b± (b 2- 4ac))/2aвне зависимости от того, какое значение имеют величины a, bи c. После того как комплексные числа введены, уже не нужно ломать руки в отчаянии, если дискриминант b 2- 4acвдруг окажется отрицательным; несмотря на это, уравнение все равно будет иметь решение.

Комплексные числа важны, а иногда просто незаменимы для решения полиномиальных уравнений, содержащих одну или несколько переменных и постоянных. Задача, как правило, состоит в нахождении корнейуравнения – точек, в которых значение полинома обращается в нуль. Если бы комплексных чисел не существовало, многие из подобных задач не имели бы решения. Наиболее простым примером является уравнение x 2 + 1 = 0, не имеющее вещественных корней. Данное равенство будет верным, то есть полином обратится в нуль, только в случае когда x = iили x = -i.

Перейти на страницу:

Похожие книги

История инженерной деятельности
История инженерной деятельности

В. В. Морозов, В. И. НиколаенкоИСТОРИЯ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИМинистерство образования и науки УкраиныНациональный технический университет«Харьковский политехнический институт»Курс лекций для студентов всех специальностей дневного и заочного обученияУТВЕРЖДЕНО редакционно-издательским советом университетаХарьков 2007В учебном пособии анализируется содержание инженерной деятельности, рассматривается развитие с древнейших времен для нашего времени.Пособие предназначено для студентов дневной и заочной форм обучения, а также всех, кто интересуется историей развития техники.Історія інженерної діяльності.Курс лекцій для студентів усіх спеціальностей денного та заочного форм навчання – В.В.Морозов, В.І.Ніколаєнко – Харків: НТУ "ХПІ", 2007. – 336 с. – Рос.мовою.В учбовому посібнику аналізується зміст інженерної діяльності, розглядається розвиток техніки з найдавніших часів до сучасності.Посібник призначено для студентів денної та заочної форм навчання, а також для усіх, хто цікавиться історією розвитку техніки.© В.В.Морозов, В.І.Ніколаєнко, 2007 р.

В. В. Морозов , В. И. Николаенко , Виталий Иванович Николаенко , Михаил Давыдович Аптекарь , Султан Курбанович Рамазанов

Технические науки / Учебники и пособия ВУЗов / Образование и наука
Чудо-оружие СССР. Тайны советского оружия
Чудо-оружие СССР. Тайны советского оружия

В XX веке в нашей стране в обстановке строжайшей секретности были созданы уникальные системы вооружения, действие которых иной раз более впечатляло, чем фантастические романы того времени. О некоторых из них и пойдет речь в этой книге. Автор не счел нужным что-либо преувеличивать или недоговаривать. В книге объективно представлены все достоинства, недостатки и перспективы возможного применения того или иного типа оружия. Читатель узнает, как маршал Тухачевский готовился к «войне роботов», как и почему взлетели на воздух дома на Крещатике в сентябре 1941 г., об испытаниях самолета-невидимки и его связи с Филадельфийским экспериментом, об атомных и ракетных секретах Лаврентия и Серго Берия, о работах по созданию флота из летающих лодок с атомными двигателями, способных доставить термоядерные заряды в любую точку земного шара, и о многом другом.

Александр Борисович Широкорад

История / Технические науки / Образование и наука