Ниже рассмотрен аспект моделирования обучающего процесса на основе системного, нейросетевого подхода с выяснением возможностей реализации резонансно-стохастического эффекта в обучении. В качестве полезной аналогии здесь уместно рассмотреть некоторые аспекты динамики нелинейных нейрокибернетических систем (см. [1–4]). В последние годы интерес к динамике нелинейных систем резко вырос в связи с открытием и экспериментальным подтверждением целой группы принципиально новых и достаточно парадоксальных эффектов (см. [4–8]). Речь идет, например, о том, что формально наличие источников шума в нелинейных динамических системах может индуцировать принципиально новые режимы функционирования, которые не могут быть реализованы в отсутствие шума. Причем, индуцируются более упорядоченные режимы, приводящие к образованию регулярных структур, увеличивающие степень когерентности, вызывающие рост усиления и увеличения отношения сигнал/шум и т.д. Среди указанных эффектов особое место занимает феномен стохастического резонанса [4–8]. Суть дела состоит в том, что отклик нелинейной системы на внешний сигнал при определенных условиях может заметно усиливаться с ростом интенсивности шума в системе. Нас интересует поиск условий в процессе обработки, скажем, математической информации, при которых процесс обучения или обработки будет наиболее эффективным и оптимальным. В качестве основополагающего модельного нейросетевого алгоритма можно использовать модифицированный [4] и в определенном смысле улучшенный известный алгоритм обучения с обратным распространением ошибок для многослойных нейрокибернетических систем [1–4]. При этом в отличие от стандартной технической нейросетевой модели состояния нейронов описываются уже не двумя значениями ±1, а принимают значения в интервале между 0 и 1. Для изучения возможности реализации режима стохастического резонанса в системе наглядно провести рассмотрение на примере нейронной сети вида [1,4]:
где
Более сложный вариант сети задается формулами типа:
Известно, что спектры сигналов, обрабатываемых биологическими системами, являются достаточно сложными (как правило апериодическими). В случае апериодического сигнала, не имеющего пиков в спектре, обычно используемые меры (коэффициент усиления, отношение сигнал/шум, распределение времен переходов) являются либо неприменимыми, либо неэффективными. Естественно, такой подход не совсем уместен в теории преподавания. Величины, характеризующие передачу шумового сигнала через систему, могут быть рассчитаны на основе взаимных корреляционных функций (или взаимных спектральных плотностей) между входом и выходом системы [9]. Если предположить, что входной сигнал
,
где – двумерная совместная плотность вероятности процессов
.
Введём в рассмотрение функцию когерентности Г(
.
Эта величина изменяется [0, 1] и характеризует степень когерентности процессов
.
Спектральная плотность на выходе имеет вид:
,
где – спектральная плотность невозмущенной системы в отсутствие сигнала. В свете сказанного, функцию когерентности в приближении линейного отклика можно представить:
.
Легко понять, что функция когерентности всегда меньше 1 и зависит от интенсивности внутреннего шума
Литература
Neural Networks for Computing, Ed. J. Denker. – N-Y.: AIP Publ., 2000.
Neural Computers, Eds. R. Eckmiller, C. Malsburg. –- Berlin: Springer, 1998.
Нейроинформатика и ее приложения. Под ред. Горбаня А.Н. – Красноярск: Изд. КГТУ, 1995. – 229 с.