При вивченні розділу “Ряди” типовими помилками для груп МО були:
1) неправильне утворення
2) неправильне скорочування різних факторіалів в чисельниках та знаменниках;
3) помиляються в ознаці порівняння – при якому
4) заміна коренями інших ступенів в ознаці Коші;
5) використання не тієї ознаки;
6) не повністю досліджують на умовну збіжність, забувають використати ознаку Лейбніца;
7) не дописують, що ряд збігається саме абсолютно;
8) неправильно роблять висновок, при якому
Випадковими помилками є описки типу: “Область збіжності ряду – інтервал (–1; –9]”.
Для групи ОА типовими є помилки 6), 7), 8), а випадковими є помилки типу “”, інколи студенти не впізнавали другу чудову границю .
При вивченні розділу “Невизначений інтеграл” групою ОА-2 типовими помилками є:
1) неправильне записування знаменника дробу 3-го типу при інтегруванні дробово-раціональних виразів;
2) неправильне застосування табличних інтегралів;
3) подавання інтегралу добутку як добутку інтегралів;
4) не враховується знак “мінус” при пошуку площі криволінійної трапеції, якщо фігура або її частини знаходяться нижче осі
Частою випадковою помилкою є недописування
На нашу думку, основними недоліками, які заважають найбільш продуктивному навчанню, є недостатня кількість годин практичних занять і відсутність годин на індивідуальні заняття, слабкий рівень шкільної підготовки, неповна забезпеченість студентів навчальною літературою.
Для подолання труднощів пропонується врахування і можливе усунення вище перерахованих факторів, а також використання умовного поділу студентів на групи за рівнем знань, більш індивідуальна робота саме з цими групами: давати можливість і сильним рухатись при вивченні з властивою їм швидкістю, і слабким дотягуватись до середнього рівня. Наприклад, на початку навчання першою парою можна провести контрольну роботу для заміру залишкових шкільних знань. За її результатами студенти умовно поділяються на групи – слабкі, середні, сильні. На другій парі сильним і середнім на картках даються індивідуальні завдання, що відповідають їхньому рівню підготовки, а викладач працює зі слабкими студентами. В процесі роботи з’ясовується найбільш незрозумілі питання, робиться крок до “підтягування” слабких студентів до середнього рівня. На наступній парі сильні знову працюють індивідуально, викладач працює з “середніми”, а слабкі пишуть контрольну роботу свого рівня. Далі чергуються методики другої та четвертої пари, а на останньому занятті проводиться контрольна робота для всіх (з урахуванням рівня). Крім того, слабким пропонується протягом семестру розв’язати 30 стандартних задач, деякі з яких обов’язково входять в їхню останню контрольну.
Важливе місце відводиться підготовці викладачем студента до інсайту, “ага-розв’язку”. Необхідно давати можливість розкритись здібностям всіх студентів в групі без виключення.
ПРОГРАММА ЧИСЛЕННОГО РАСЧЕТА ФУНКЦИИ
ГРИНА ДЛЯ БИСПИНОРНОГО УРАВНЕНИЯ ДИРАКА
Л.А. Витавецкая
г. Одесса, Одесский государственный экологический
университет
Функция Грина (ФГ) играет важную роль в аппарате математической физики. Ее построение в аналитическом или численном виде является ключевым моментом при решении целого ряда задач как нерелятивистской, так и релятивистской квантовой теории поля [1-4]. Целью нашей работы является построение компактного численного алгоритма вычисления функции Грина релятивистского биспинорного уравнения Дирака с центральным несингулярным потенциалом и комплексной энергией и его реализация в виде комплекса программ с использованием метода Иванова-Ивановой (см. напр. [3]).
Искомая ФГ определяется как решение неоднородного уравнения Дирака (УД):
(1)
где – Дираковский гамильтониан [2]:
(2)
где