де
(
Далі сумування по КВ імпульсу замінюється інтегруванням, оскільки результат не залежить від точки відліку, і нарешті,
{-
(
0=
—
0=-
Вирази для моментів мають остаточний вигляд:
(
2= D 2/k
3= {4D
3/ [
Чисельний розрахунок шуканих характеристик може бути проводиться на підставі обчислювального комплексу “Superstructure” [3–6].
Література
Glushkov A.V., Ivanov L.N. DC Strong-Field Stark-Effect: consistent quantum-mechanical approach // J. Phys.B: At. Mol. Opt. Phys. – 1993. – Vol. 26, N 16. – P. L379–L386.
Glushkov A.V., Ivanov L.N. Radiation Decay of Atomic States: atomic residue and qauge noninvariant contributions// Phys. Lett.A. – 1992. – Vol. 170, N1. – P. 33–37.
Glushkov A.V., Ambrosov S.V. etal, Resonances in Quantum Systems in strong external fields: Consistent Quantum Approach // J. Techn. Phys. – 1997. – Vol. 38, N 2. – P. 215-218.
Glushkov A.V., Prepelitsa G.P et al, QED Theory of Nonlinear Interaction of Complex Atomic Systems with Laser field. Multiphoton Resonances // J. Techn. Phys. – 1997. – Vol. 38, N2. – P. 219-224.
Malinovskaya S.V. S-matrix formalism in the calculation of oscillator strengths, radiation and autoionization widths for complex atoms and multicharged ions // Науковий вісник Ужгородського університету. Серія фіз.-мат. – 2000. – Т. 8, Ч. 2. – С. 387-391.
Glushkov A.V., Vitavetskaya L.A. Accurate QED perturbation theory calculation of the structure of heavy and superheavy elements atoms and multicharged ions with account of nuclear size effect and QED corrections // Науковий вісник Ужгородського університету. Серія фіз.-мат. – 2000. – Т. 8, Ч. 2. – С. 321-326.
НЕЙРОСЕТЕВОЙ ПОДХОД В ТЕОРИИ И МЕТОДИКЕ
ПРЕПОДАВАНИЯ МАТЕМАТИКИ И ТЕСТИРОВАНИЕ
РЕЗУЛЬТАТОВ РАБОТЫ УЧЕБНОГО ПРОЦЕССА
А.В. Глушков 1, О.Ю. Хецелиус 1, И.И. Шумлянский 2
1г. Одесса, Одесский государственный экологический
университет
2г. Одесса, Одесская национальная академия связи
им. А.С. Попова
В современной теории и методике преподавания математики одной из ключевых проблем, на наш взгляд, является построение оптимальной, высоко эффективной модели обучающего процесса, приводящего в результате к подготовке высококвалифицированных специалистов с высоким уровнем как образовательного интеллекта, так и способностями не только анализировать, но и творчески созидать, включая возможности экспертных оценок. Одним из эффективных подходов к созданию оптимальных моделей обучающего процесса, на наш взгляд, следует считать нейросетевой. В последнее десятилетие наука о нейросетях получила значительное развитие (см. напр., [1–3]), причем долгое время основной акцент делался на изучение нейросетевых алгоритмов в технических динамических системах. Лишь в последние годы появились работы по развитию нейросетевого моделирования в социологии, политологии и др. гуманитарных дисциплинах. Цель нашей работы состоит в развитии нейросетевых моделей в теории и методике преподавания математики [4] и обеспечении на их основе оптимальной стратегии учебного процесса.