Одним із важливих понять теорії диференціальних рівнянь є поняття крайової задачі. Особливість методики вивчення теми полягає в тому, що студенти відносно самостійно за допомогою систем комп’ютерної математики (DERIVE, Matlab і інших) знаходять спосіб виконання предметно-пізнавальної дії для одержання потрібних результатів (зв’язків, числових характеристик параметрів, закономірностей). Крайові задачі зустрічаються в теорії електронних кіл, теорії управління, хімічній кінетиці та інших галузях науки і техніки. Тому знайомство із задачами прикладного змісту переконує студентів у необхідності оволодіння методами розв’язування крайових задач для звичайного диференціального рівняння. Прикладом може бути задача про математичне моделювання робочого процесу вібротраспортуючого пристрою, яке зводиться до розв’язування відповідного диференціального рівняння
де
Завданням для індивідуальної роботи може бути інша задача. Знайти реакцію системи стеження радіолокатора на вплив, що задається функціями
При розв’язуванні використовуються такі методи: метод характеристичного рівняння, варіації довільних сталих, операційний метод (лишки та інтеграл Дюамеля), сплайн-функції і інші.
Оволодіння новим матеріалом здійснюється у такій послідовності: за допомогою довідникових програм студенти можуть ознайомитись із задачами, при розв’язуванні яких необхідно знати методи розв’язання крайових задач для звичайних диференціальних рівнянь; викладач організовує роботу студентів з програмами, в яких моделюються відповідні фізичні процеси; розкриває зміст поняття крайової задачі звичайного диференціального рівняння; студенти будують інтерполяційні многочлени, за допомогою одного з пакетів одержують графіки розв’язків рівнянь та їх наближень базовими функціями.
Зміст поняття крайової задачі для звичайних диференціальних рівнянь формується шляхом аналізу математичної моделі. А зміст поняття наближеного розв’язку крайової задачі можна розкрити інтегруючи, наприклад, рівняння
розв’язком якого є функція
Для інших базових функцій, а саме:
За допомогою пакетів студенти будують наближені розв’язки. Якщо вибрана система функцій {
Розглянемо застосування математичних комп’ютерних систем до виконання типових розрахунків
Задача. Знайти розв’язок крайової задачі
1. Запишіть відповідний функціонал
2. Виберіть базисні функції, наприклад:
3. Запишіть перше наближення
4. Завантажте комп’ютерну систему DERIVE, та виконайте вказані дії.
5. Побудуйте графік функцій
Задача. Спрощена модель системи стеження радіолокатора може бути сформульована у вигляді ДР [2]:
Завдання типового розрахунку полягає в оцінюванні різниці вхідного і вихідного сигналів