Читаем Тесты и их решения по финансовой математике полностью

IRR; CPT: IRR= 19.65 %;

2-шаг (расчет ): 2nd RESET ENTER; CF;

10000 +/– ENTER: CF0= -10000;

V; 4000 ENTER: C01 = 4000;

V; 1 ENTER: F01 = 1;

V; 3800 ENTER: C02 = 3800;

V; 1 ENTER: F02 = 1;

V; 3000 ENTER: C03 = 3000;

V; 1 ENTER: F03 = 1;

V; 2500 ENTER: C04 = 2500;

V; 3 ENTER: F04 = 3;

IRR; CPT: IRR= 23.37 %;

3-шаг (расчет ): 19.65 % 23.37 %=-3.71 %.

Решение на компьютере.

1-шаг (расчет ): ВСД(-10000; 3500; 2500; 4000; 0; 4000; 4000)= 19.65 %;

2-шаг (расчет ): ВСД(-10000; 4000; 3800; 3000; 2500; 2500; 2500)= 23.37 %;

3-шаг (расчет ): 19.65 % 23.37 %=-3.71 %.

ТЕСТ 2

Уравнение стоимости. Взвешенная по величине и взвешенная по времени ставки доходности

Вопрос 1

07


В каком интервале находится взвешенная по времени ставка доходности за 1989 год ?

A. меньше 1%

B. 1 %, но меньше 2%

C.2%, но меньше 3%

D. 3 %, но меньше 4%

E. 4 % или больше

Решение.


08


Здесь и далее количество 1000 единиц будем выделять с помощью запятых, т.е., например, 10000=10,0.

Напоминаем, что, если функция накоплений А(t), то ставка доходности в n-ом промежутке определяем следующим образом:

. (2.1)

Чтобы определить взвешенную по времени ставку инвестиционной доходности фонда в течение 1989 года, сначала надо определить ставки доходности для каждого промежутка, где известны начальная и конечная стоимости (балансы) фонда, непосредственно предшествующие депозиту или снятию денег. По условию задачи таких промежутков четыре.

Итак, в силу (2.1) ставка доходности с 1 января по 1 апреля 1989 г. определяется уравнением ,

т. к. сразу же после выплаты 31 марта 10000 стоимость портфеля 1 апреля составляет 215000.

С учетом полученного взноса 30 июня 75000 ставка доходности с 1 апреля по 1 июля составляет

Ставка доходности с 1 июля по 1 октября составляет

Наконец, ставка доходности с 1 октября по 31 декабря 1989 года равна

.

Взвешенная по времени доходность за год находится из факторов накопления, соответствующих каждому интервалу, как

(2.2)

т. е. =1,125*0.9349*1,0435*0.9375 – 1 = 2.89 %.

Вопрос 2

09


(а)=взвешенная по времени ставка инвестиционной доходности фонда в течение 1989 года;

(в)=взвешенная по величине годовая ставка инвестиционной доходности фонда в случае использования простых процентов;

(с)=ставка инвестиционной доходности фонда в случае использования простых процентов и равномерного распределения в течение года всех депозитов и снятий денег.

A. (а)>(в)>(c)

B. (а)>(c)>(в)

С. (с)>(а)>(в)

D.(с)>(в)>(а)

Е. ни один из указанных вариантов

Решение.


10


Пользуясь (2.1), определим ставки доходности для каждого из 3-х промежутков, соответственно

=1.15,

,

,

Следовательно, в силу (2.2) взвешенная по времени доходность за год будет равна



(в) Выведя уравнение стоимости путем сложения всех величин на момент 31 декабря 1989 года, рассчитаем взвешенную по величине доходность фонда в случае использования простых процентов, рассматривая только депозиты и снятия денег и не принимая во внимание промежуточные балансы

.

Поскольку это уравнение является линейным по i, то легко получить результат



100+100,

111.25 .

(с) Для определения ставку инвестиционной доходности фонда в случае использования простых процентов и равномерного распределения в течение года всех депозитов и снятий денег, предположим, что все депозиты и снятий денег будут происходит в середине года. Тогда выведя уравнение стоимости путем сложения всех величин на момент 31 декабря 1989 года, имеем

100000(1+

100+100,

94.5

т. е.

Сравнивая полученные ставки доходности, получим ответ: (с)>(в)>(а).

Вопрос 3

11


В каком интервале находится взвешенная по времени ставка доходности за 1989 год ?

A. меньше 6.90%

B. 6.90 %, но меньше 7.30%

C. 7.30 %, но меньше 7.70%

D. 7.70 %, но меньше 8.10%

E.8.10 % или больше

Решение.


12


Пользуясь (2.1), определим ставки доходности для каждого из 4-х промежутков, соответственно

=1.067,

,

,

.

Следовательно, взвешенная по времени доходность за год находится из факторов накопления, соответствующих каждому интервалу, как



т. е. i=8.2 %.

Вопрос 4

Рассмотрим следующие данные:

Разовый депозит в фонд: 1000 внесено 1/1/92. Снятия денег из фонда не было.

Процентная ставка в 1992-1993 г.г.: 7 % в год, начисляемых ежемесячно.

Ставка дисконта в 1994-1997 г.г.: 5 % в год , начисляемых ежеквартально.

Интенсивность процента в течение 1998-2002 г.г.: 3 % в год.

Выборочное значение: e =2.71828.

В каком интервале находится величина фонда на 1/1/2003?

A. Меньше 1500

B. 1500, но меньше 1600

C.1600, но меньше 1700

D. 1700, но меньше 1800

E. 1800 или больше

Решение.


13


Пусть – эффективная годовая процентная ставка за 1992-1993 г.г., за 1994-1997 г.г., за 1998-2002 г.г. Тогда в силу (1.1) накопленная сумма от первоначальной суммы депозита равна

=

=

=

Вопрос 5

Если , то в каком интервале находится ?

A. Меньше 10.95%

B.10.95 %, но меньше 11.45%

C. 11.45 %, но меньше 11.95%

D. 11.95 %, но меньше 12.45%

E. 12.45 % или больше

Решение.

В силу (1.1)

.

Перейти на страницу:

Похожие книги

Пароль скрещенных антенн
Пароль скрещенных антенн

Издание 2-еЭта книга читается как увлекательный фантастический роман. Она дает возможность читателю пережить невообразимые, на каждом шагу поражающие приключения — приключения путешественника в диковинные миры, о которых мы знаем гораздо меньше, чем они того заслуживают.Три повести, вошедшие в эту книгу («Они летят по заданию» — о медоносных пчелах, «Пароль скрещенных антенн» — о муравьях, «Отступившие в подземелье» — о термитах), советская и прогрессивная зарубежная критика расценила как выдающийся образец популяризации биологии, а также как вызывающее на размышление и волнующее описание интереснейшего явления природы — семьи общественных насекомых.Отзывы об этой и других книгах издательства «Детская литература» просим присылать по адресу: Москва, А-47, ул. Горького, 43. Дом детской книги.Фотографии А.СтефановаРисунки А.Семенцова-Огиевского

Иосиф Аронович Халифман

Приключения / Детская образовательная литература / Биология, биофизика, биохимия / Природа и животные / Биология / Образование и наука