The range of the apparatus is not so wide as that of wireless telegraphy, varying from 10 to 15 miles for a large ship (although instances of 20 to 30 are on record), and from 3 to 8 miles for a small ship.
At present the receiving apparatus is fixed on only some 650 steamers of the merchant marine, these being mostly the first-class passenger liners. There is no question that it should be installed, along with wireless apparatus, on every ship of over 1000 tons gross tonnage. Equally important is the provision of signalling apparatus on board ships: it is obviously just as necessary to transmit a signal as to receive one; but at present the sending of signals from ships has not been perfected. The invention of signal-transmitting apparatus to be used while the ship is under way is as yet in the experimental stage; but while she is at rest a bell similar to those used by lighthouses can be sunk over her side and rung by hand with exactly the same effect. But liners are not provided with them (they cost only 60 Pounds!). As mentioned before, with another 60 Pounds spent on the Republic’s equipment, the Baltic could have picked up her bell and steered direct to her—just as they both heard the bell of Nantucket Lightship. Again, if the Titanic had been provided with a bell and the Californian with receiving apparatus,—neither of them was,—the officer on the bridge could have heard the signals from the telephones near.
A smaller size for use in lifeboats is provided, and would be heard by receiving apparatus for approximately five miles. If we had hung one of these bells over the side of the lifeboats afloat that night we should have been free from the anxiety of being run down as we lay across the Carpathia’s path, without a light. Or if we had gone adrift in a dense fog and wandered miles apart from each other on the sea (as we inevitably should have done), the Carpathia could still have picked up each boat individually by means of the bell signal.
In those ships fitted with receiving apparatus, at least one officer is obliged to understand the working of the apparatus: a very wise precaution, and, as suggested above, one that should be taken with respect to wireless apparatus also.
It was a very great pleasure to me to see all this apparatus in manufacture and in use at one of the principal submarine signalling works in America and to hear some of the remarkable stories of its value in actual practice. I was struck by the aptness of the motto adopted by them—“De profundis clamavi”—in relation to the Titanic’s end and the calls of our passengers from the sea when she sank. “Out of the deep have I called unto Thee” is indeed a suitable motto for those who are doing all they can to prevent such calls arising from their fellow men and women “out of the deep.”
The “lanes” along which the liners travel are fixed by agreement among the steamship companies in consultation with the Hydrographic departments of the different countries. These routes are arranged so that east-bound steamers are always a number of miles away from those going west, and thus the danger of collision between east and west-bound vessels is entirely eliminated. The “lanes” can be moved farther south if icebergs threaten, and north again when the danger is removed. Of course the farther south they are placed, the longer the journey to be made, and the longer the time spent on board, with consequent grumbling by some passengers. For example, the lanes since the disaster to the Titanic have been moved one hundred miles farther south, which means one hundred and eighty miles longer journey, taking eight hours.
The only real precaution against colliding with icebergs is to go south of the place where they are likely to be: there is no other way.