Since Palo Verde opened in 1986, its used fuel has been accumulating, because there’s nowhere else to take it. In plants everywhere, spent fuel ponds have been re-racked to squeeze in thousands of more fuel assemblies. Together, the world’s 441 functioning nuclear plants annually produce almost 13,000 tons of high-level nuclear scrap. In the United States, most plants have no more pool space, so until there’s a permanent burial ground, waste-fuel rods are now mummified in “dry casks”—steel canisters clad in concrete from which the air and moisture have been sucked. At Palo Verde, where they’ve been used since 2002, these are stored vertically, and resemble giant thermos bottles.
Every country has plans to permanently entomb the stuff. Every country also has citizens terrified of events like earthquakes that could unseal buried waste, and of the chance that some truck carrying it will have a wreck or be hijacked en route to the landfill.
In the meantime, used nuclear fuel, some of it decades old, languishes in holding tanks. Oddly, it is up to a million times more radioactive than when it was fresh. While in the reactor, it began mutating into elements heavier than enriched uranium, such as isotopes of plutonium and americium. That process continues in the waste dumps, where used hot rods exchange neutrons and expel alpha and beta particles, gamma rays, and heat.
If humans suddenly departed, before long the water in the cooling ponds would boil and evaporate away—rather quickly in the Arizona desert. As the used fuel in the storage racks is exposed to air, its heat would ignite the cladding of the fuel rods, and radioactive fire would break out. At Palo Verde, like other reactors, the spent-fuels building was intended to be temporary, not a tomb, and its masonry roof is more similar to a big-box discount store’s than to the reactor’s pre-stressed containment dome. Such a roof wouldn’t last long with a radioactive fire cooking below it, and much contamination would escape. But that wouldn’t be the biggest problem.
Resembling giant enoki mushrooms, Palo Verde’s great steam columns rise a mile over the desert creosote flats, each consisting of 15,000 gallons of water evaporated per minute to cool Palo Verde’s three fission reactors. (As Palo Verde is the only U.S. plant not on a river, bay, or seacoast, the water is recycled Phoenix effluent.) With 2,000 employees to keep pumps from sticking, gaskets from leaking, and filters back-washed, the plant is a town big enough to have its own police and fire departments.
Suppose its inhabitants had to evacuate. Suppose they had enough advance warning to shut down by jamming all the moderating rods into each reactor core to stop the reaction and cease generating electricity. Once Palo Verde was unmanned, its connection to the power grid would automatically be cut. Emergency generators with a seven-day diesel supply would kick in to keep coolant water circulating, because even if fission in the core stopped, uranium would continue to decay, generating about 7 percent as much heat as an active reactor. That heat would be enough to keep pressurizing the cooling water looping through the reactor core. At times, a relief valve would open to release overheating water, then close again when the pressure dropped. But the heat and pressure would build again, and the relief valve would have to repeat its cycle.
At some point, it becomes a question of whether the water supply is depleted, a valve sticks, or the diesel pumps cut out first. In any case, cooling water will cease being replenished. Meanwhile, the uranium fuel, which takes 704 million years to lose just half its radioactivity, is still hot. It keeps boiling off the 45 feet of water in which it sits. In a few weeks at the most, the top of the reactor core will be exposed, and the meltdown will begin.
If everyone had vanished or fled with the plant still producing electricity, it would keep running until any one of thousands of parts monitored daily by maintenance personnel failed. A failure should automatically trigger a shutdown; if it didn’t, the meltdown might occur quite quickly. In 1979 something similar happened at Pennsylvania’s Three Mile Island Plant when a valve stuck open. Within two hours and 15 minutes, the top of the core was exposed and turned into lava. As it flowed to the bottom of the reactor vessel, it started burning through six inches of carbon steel.