“Typical human activity is more devastating to biodiversity and abundance of local flora and fauna than the worst nuclear power plant disaster,” dourly observe radioecologists Robert Baker, of Texas Tech University, and Ronald Chesser, of the University of Georgia’s Savannah River Ecology Laboratory, in another study. Baker and Chesser have documented mutations in the cells of voles in Chernobyl’s hot zone. Other research on Chernobyl’s voles reveals that, like its swallows, the life-spans of these rodents are also shorter than those of the same species elsewhere. However, they seem to compensate by sexually maturing and bearing offspring earlier, so their population hasn’t declined.
If so, nature may be speeding up selection, upping the chances that somewhere in the new generation of young voles will be individuals with increased tolerance to radiation. In other words, mutations—but stronger ones, evolved to a stressed, changing environment.
Disarmed by the unexpected beauty of Chernobyl’s irradiated lands, humans have even tried to encourage nature’s hopeful bravado by reintroducing a legendary beast not seen in these parts for centuries: bison, brought from Belarus’s Belovezhskaya Pushcha, the relic European forest it shares with Poland’s Białowieża Puszcza. So far, they’re grazing peacefully, even nibbling the bitter namesake wormwood—
Whether their genes will survive the radioactive challenge will only be known after many generations. There may be more challenges: A new sarcophagus to enclose the old, useless one, isn’t guaranteed to last, either. Eventually, when its roof blows away, radioactive rainwater inside and in adjacent cooling ponds could evaporate, leaving a new lode of radioactive dust for the burgeoning Chernobyl menagerie to inhale.
After the explosion, the radionuclide count was high enough in Scandinavia that reindeer were sacrificed rather than eaten. Tea plantations in Turkey were so uniformly dosed that Turkish tea bags were used in Ukraine to calibrate dosimeters. If, in our wake, we leave the cooling ponds of 441 nuclear plants around the world to dry and their reactor cores to melt and burn, the clouds enshrouding the planet will be far more insidious.
Meanwhile, we are still here. Not just animals but people too have crept back into Chernobyl’s and Novozybkov’s contaminated zones. Technically, they’re illegal squatters, but authorities don’t try very hard to dissuade the desperate or needy from gravitating to empty places that smell so fresh and look so clean, as long as no one checks those dosimeters. Most of them aren’t simply seeking free real estate. Like the swallows who returned, they come because they were here before. Tainted or not, it’s something precious and irreplaceable, even worth the risk of a shorter life.
It’s their home.
CHAPTER 16
Our Geologic Record
1. Holes
ONE OF THE largest, and probably longest-lasting, relics of human existence after we’re gone is also one of the youngest. As the gyrfalcon flies, it lies 180 miles northeast of Yellowknife, Northwest Territories, Canada. If you flew over it today, it would be the very round hole half a mile wide and 1,000 feet deep. There are many huge holes here. This is the dry one.
Though, within a century, the rest may be, too. North of the 60th parallel, Canada contains more lakes than the rest of the world combined. Nearly half of Northwest Territories isn’t land at all, but water. Here, ice ages gouged cavities into which icebergs dropped when the glaciers retreated. When they melted, these earthen kettles filled with fossil water, leaving countless mirrors that sequin the tundra. Yet the resemblance to an immense sponge is misleading: because evaporation slows in cold climates, little more precipitation falls here than in the Sahara. Now, as the permafrost thaws around these kettles, glacial water held in place by frozen soil for thousands of years is seeping away.
Should northern Canada’s sponge dry out, that would also be a human legacy. For now, the hole in question and two recent smaller ones nearby comprise Ekati, Canada’s first diamond mine. Since 1998, a parade of 240-ton trucks with 11-foot tires, owned by BHP Billiton Diamonds, Inc., has lugged more than 10,000 tons of ore to a crusher 24 hours a day, 365 days a year, even at —60°F. The daily yield is a handful of gem-quality diamonds, worth well over $1 million.