Читаем The Worlds I See полностью

Одно только изобилие еды поражало воображение. В комнатах отдыха было больше закусок, напитков и профессионального оборудования для приготовления эспрессо, чем в Стэнфорде или Принстоне, а практически в каждом здании Google такая комната была на каждом этаже. И все это еще до того, как я попал в кафетерии.

Далее последовали технологии. После стольких лет, проведенных в нервотрепке из-за нестабильных проекторов и неудачных продуктов для видеоконференций 2000-х годов, совещания в Google были похожи на что-то из научной фантастики. Современная система телеприсутствия была встроена в каждую комнату, от залов заседаний, рассчитанных на пятьдесят человек, до кабинок размером со шкаф для одного, и все активировалось одним нажатием на сенсорный экран.

А еще был талант - просто поразительная глубина таланта. Я не мог не покраснеть, вспоминая два изнурительных года, которые ушли на то, чтобы привлечь трех коллег для помощи в создании окружающего интеллекта для больниц. Здесь же в первый день меня ждала команда из пятнадцати человек, готовая к работе. И это было только начало - всего за восемнадцать месяцев мы выросли в двадцать раз. Доктора наук с блестящими дипломами, казалось, были повсюду, и это укрепляло ощущение, что все возможно. Каким бы ни было будущее ИИ, Google Cloud стал для меня окном в мир, который мчался к нему так быстро, как только мог.

Мои пятницы в Стэнфорде только подчеркивали это сравнение, поскольку слух о моей новой должности распространился, и запросы на стажировку стали ежедневным явлением. В какой-то степени это было понятно, поскольку мои студенты (и иногда профессора) просто делали все возможное, чтобы наладить связи. Однако меня беспокоило то, что все без исключения разговоры на эту тему заканчивались одним и тем же: что наиболее интересные для них исследования невозможны вне частной лаборатории. Даже в таком месте, как Стэнфорд, бюджеты просто не были достаточно большими. Часто они даже не были близки к этому. Корпоративные исследования были не просто более прибыльным вариантом, но и все чаще единственным.

И наконец, были данные - товар, на котором основывался весь бренд Google. ImageNet стал моим первым взглядом на потенциал данных в достаточно большом масштабе, и почти все мои исследования с тех пор строились на этой идее. Десятилетия моделей автомобилей с Джоном, кипы фотографий в паре с описаниями с Андреем, целая страна из изображений Street View и записей Бюро переписи населения с Тимнитом - объемы данных продолжали расти, а вместе с ними росли и возможности ИИ. Теперь меня окружало не только неописуемое изобилие, но и категории, о которых я раньше даже не подозревал: данные от сельскохозяйственных предприятий, стремящихся лучше понять растения и почву, данные от клиентов из медиаиндустрии, желающих упорядочить свои библиотеки контента, данные от производителей, работающих над сокращением дефектов продукции, и многое другое.

По мере того как тянулись месяцы, я ходил туда-сюда, балансируя между двумя учреждениями, которые лучше всего подходят для того, чтобы внести свой вклад в будущее ИИ. Оба были полны талантов, творчества и видения. Оба имели глубокие корни в истории науки и техники. К ним даже можно было добраться по одной и той же автостраде, расположенной всего в нескольких выездах на 101-е шоссе. Но только у одной из них, похоже, хватало ресурсов для адаптации, поскольку барьеры на пути к успеху росли, как гора, возвышающаяся над горизонтом, а ее пик был намного выше облаков.

Мои мысли постоянно возвращались к тем восьмистам графическим процессорам, пробивающим себе дорогу через вычислительную нагрузку, которую профессор и ее студенты даже не могли себе представить. Так много транзисторов. Столько тепла. Столько денег. Слово "головоломка" не передавало того ужаса, который я начинал испытывать.

ИИ становился привилегией. Исключительно эксклюзивной.

 

Еще со времен ImageNet было ясно, что масштаб важен, но в последние годы это понятие приобрело почти религиозное значение. Средства массовой информации были перенасыщены стоковыми фотографиями серверных помещений размером с городской квартал и бесконечными разговорами о "больших данных", укрепляя идею масштаба как своего рода магического катализатора, призрака в машине, который отделял старую эру ИИ от бездыханного, фантастического будущего. И хотя анализ мог стать немного упрощенным, он не был ошибочным. Никто не мог отрицать, что нейронные сети действительно процветали в эпоху изобилия: ошеломляющие объемы данных, массивные многоуровневые архитектуры и акры взаимосвязанного кремния действительно привели к историческим изменениям.

Перейти на страницу:

Похожие книги

Искусство статистики. Как находить ответы в данных
Искусство статистики. Как находить ответы в данных

Статистика играла ключевую роль в научном познании мира на протяжении веков, а в эпоху больших данных базовое понимание этой дисциплины и статистическая грамотность становятся критически важными. Дэвид Шпигельхалтер приглашает вас в не обремененное техническими деталями увлекательное знакомство с теорией и практикой статистики.Эта книга предназначена как для студентов, которые хотят ознакомиться со статистикой, не углубляясь в технические детали, так и для широкого круга читателей, интересующихся статистикой, с которой они сталкиваются на работе и в повседневной жизни. Но даже опытные аналитики найдут в книге интересные примеры и новые знания для своей практики.На русском языке публикуется впервые.

Дэвид Шпигельхалтер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
История леса
История леса

Лес часто воспринимают как символ природы, антипод цивилизации: где начинается лес, там заканчивается культура. Однако эта книга представляет читателю совсем иную картину. В любой стране мира, где растет лес, он играет в жизни людей огромную роль, однако отношение к нему может быть различным. В Германии связи между человеком и лесом традиционно очень сильны. Это отражается не только в облике лесов – ухоженных, послушных, пронизанных частой сетью дорожек и указателей. Не менее ярко явлена и обратная сторона – лесом пропитана вся немецкая культура. От знаменитой битвы в Тевтобургском лесу, через сказки и народные песни лес приходит в поэзию, музыку и театр, наполняя немецкий романтизм и вдохновляя экологические движения XX века. Поэтому, чтобы рассказать историю леса, немецкому автору нужно осмелиться объять необъятное и соединить несоединимое – экономику и поэзию, ботанику и политику, археологию и охрану природы.Именно таким путем и идет автор «Истории леса», палеоботаник, профессор Ганноверского университета Хансйорг Кюстер. Его книга рассказывает читателю историю не только леса, но и людей – их отношения к природе, их хозяйства и культуры.

Хансйорг Кюстер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература