Расстояние между
Затем определим относительную частоту ноты
Нота
Последние ноты строя —
Приняв частоту
Можно повторить эти же действия, чтобы определить частоты бемолей, соответствующих черным клавишам пианино.
Для этого нужно последовательно выполнять сдвиг на одну квинту ниже, начиная с ноты
Пифагорейская комма
На одну квинту выше ноты
Построив квинтовый круг из 12 квинт, мы получим ноту, которая немного отличается от первоначальной и отстоит от нее на семь октав:
Это «немного» и есть пифагорейская комма. Ее значение (обозначим его ПК) можно вычислить, взяв за основу частоту
Отличие будет чуть больше 1 % октавы или, что равносильно, почти четверть полутона. Это отличие вызвано тем, что дробь, соответствующая квинте, несовместима с дробью, соответствующей октаве, что нетрудно показать. Для этого попробуем найти такие показатели степеней
Из последнего равенства следует, что нужно найти число, которое одновременно было бы степенью двух и трех. Однако, так как 2 и 3 являются простыми числами, это противоречит основной теореме арифметики, согласно которой любое положительное число можно однозначно представить в виде произведения простых множителей. Эту теорему, которую сформулировал Евклид, впервые полностью доказал Карл Фридрих Гаусс. Из нее следует, что квинта и октава пифагорейского строя никогда не совпадут, то есть не существует хроматического строя без пифагорейской коммы, что аналогично.
И человеческий голос, и безладовые инструменты допускают использование так называемого натурального строя, в котором ноты более согласованны, гармоничны. И голос, и струнные инструменты допускают незначительное изменение высоты издаваемого звука (корректировку строя) для наибольшего созвучия. Как вы увидели, пифагорейский строй создается на основе одной главной ноты, из которой получаются остальные ноты путем упорядочивания чистых квинт. Однако это вызывает некоторые математические затруднения: во-первых, несовместимость квинты и октавы ведет к появлению уже упомянутой волчьей квинты, во-вторых, существует несовместимость между квинтами и большими терциями.
В пифагорейском строе соотношение частот для терций получается с помощью цепочки из четырех квинт. Используя смещение на одну или несколько октав, получим, что соотношение частот равно 81:64. Однако существует и другой способ определения терции с помощью простого соотношения 5/4 или, что равносильно, 80:64. Это чистая терция.
Отсюда следует, что в пифагорейском строе, представляемом в виде последовательности квинт, терции не являются чистыми. На белых клавишах пианино расположены три терции:
Диатонический строй
В результате поисков «чистого» натурального строя появилась новая система отношения звуков — диатонический строй. В пифагорейском строе звуки выражаются в виде последовательности квинт. Диатонический строй имеет более сложную структуру.
Начиная с ноты
Последняя нота,
Интервалы диатонического строя «чище» и более постоянны. Это проявляется и в том, что соотношения частот звуков диатонического строя относительно просты. Сначала, начиная с ноты
Аналогично определяется частота ноты
И наконец, рассчитывается частота