Читаем Том 13. Абсолютная точность и другие иллюзии. Секреты статистики полностью

Также могут существовать (и существуют) опросы, результаты которых формируются на основе мнений заинтересованных лиц. Цель таких опросов — повлиять на предпочтения избирателей. Хорошим показателем надежности результатов может служить опыт и авторитет организации, проводившей исследование, а также указание на источник, в котором опубликованы результаты опроса. Чтобы охарактеризовать подлинную надежность результатов, одного лишь статистического показателя в 95 % не всегда бывает достаточно.

Глава 4

Как мы рассуждаем, когда принимаем решение. Проверка статистических гипотез

Этот случай произошел в 1920-е годы в Англии, в Кембридже. Несколько преподавателей, их супруги и гости по случаю прекрасной погоды пили чай на открытой террасе. Попробовав чай, одна из присутствующих дам заметила, что вкус меняется, если налить молоко в чай, а не наоборот.

Кто-то осторожно возразил, что это маловероятно. Начался спор, в котором стороны прибегали ко всевозможным аргументам из физики и химии: состав напитка не меняется в зависимости от того, что было налито в чашку сначала, чай или молоко; частицы растворялись абсолютно одинаково; перепад температур исключался и прочие многочисленные доводы. Спорящие пришли к выводу: определить, что было налито в чашку сначала, невозможно. Или же… все-таки возможно?

Один из присутствующих, человек лет сорока по имени Рональд Эйлмер Фишер, предложил развеять сомнения с помощью «передовой» методики — проведения эксперимента. Очевидно, что опыт нельзя было провести всего с двумя чашками, так как в этом случае вероятность угадывания равнялась 1/2. В этом случае нельзя определить, действительно ли участник эксперимента смог отличить по вкусу один напиток от другого или же попросту угадал. Однако если бы перед участником эксперимента стояло по 4 чашки с каждым напитком, вероятность угадывания равнялась бы всего 1 к 70 (так как существует 70 способов выбрать 4 чашки из 8). Если бы в этих условиях испытуемый смог точно определить, что было налито в каждую чашку сначала, чай или молоко, это означало бы, что способ приготовления чая действительно можно определить на вкус с небольшой, притом известной, погрешностью.

Фишер в те годы уже был известным ученым. В 1935 году он опубликовал ставший классическим труд The Design of Experiments о стратегиях выбора экспериментальных данных. Во второй главе его книги некоторые ключевые понятия проиллюстрированы именно этим примером с чашками чая.


Рассуждения дегустатора чая


Сначала предположим, что дегустатор чая не может различить, что было добавлено в чашку сначала, чай или молоко. Это предположение совершенно логично. Опровергнуть первоначальную гипотезу могут только результаты качественно продуманного и проведенного эксперимента. Исходная гипотеза будет опровергнута, если результаты эксперимента окажутся маловероятными при допущении, что дегустатор действительно не может различить чашки. Какие именно результаты окажутся «маловероятными», определяем мы сами: менее 5 % случаев, менее 1 % случаев или любое другое число.

Допустим, мы готовы поверить, что дегустатор чая действительно может различать чашки, только тогда, когда вероятность случайного угадывания не будет превышать 5 %. Следовательно, эксперимент, в котором нужно выбрать 3 чашки из 6, будет некорректным, так как это можно сделать 20 различными способами, и вероятность случайного угадывания составит ровно 1 к 20, то есть 5 %. Это нетрудно проверить: первую чашку можно выбрать шестью способами, вторую — пятью, третью — четырьмя, следовательно, 3 чашки можно выбрать 6·5·4 = 120 способами. Однако здесь мы учитываем порядок выбора, то есть предполагаем, что чашки подписаны буквами от А до F и считаем варианты ADF и FDA различными. Чтобы учесть повторы, нужно поделить число вариантов на число способов, которыми можно упорядочить 3 чашки (3·2·1 = 6). Следовательно, выбрать 3 чашки из 6 можно 120/6 = 20 способами. Если нужно правильно выбрать 4 чашки из 8, то число вариантов будет равняться (8·7·6,5)/(4·3·21) = 70. Так как выбрать случайным образом все 4 чашки, в которых был сначала налит чай, а затем — молоко, можно только одним способом, то вероятность угадывания равняется 1 к 70, то есть 1,4 %. Если участник эксперимента верно укажет на 3 чашки из 4, это не будет доказывать, что вкус чая будет отличаться: вероятность правильного выбора трех чашек случайным образом равна примерно 23 %.

Но не стоит тратить все силы на математические рассуждения. Также нужно уделить очень большое внимание деталям проведения эксперимента, отсутствию подсказок для испытуемого и другим нюансам. Фишер прямо указывает, что чашки в эксперименте должны располагаться случайным образом:

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика