Читаем Том 13. Абсолютная точность и другие иллюзии. Секреты статистики полностью

Формула для вычисления коэффициента корреляции несколько громоздка, но вывести ее нетрудно (не беспокойтесь, мы не будем выводить эту формулу). По сравнению с другими похожими показателями коэффициент корреляции обладает многими преимуществами: его значения всегда лежат в интервале от —1 до 1 и не зависят от единицы измерения исходных данных. В нашем случае коэффициент корреляции не изменится, если мы будем использовать сантиметры и килограммы вместо дюймов и фунтов (как в исходных примерах).

Если коэффициент корреляции равен 1, это означает, что между двумя переменными существует строгая зависимость. При увеличении значения одной переменной значение другой также увеличится. В этом случае между переменными действительно присутствует математическая зависимость, и зная значение одной переменной, можно точно вычислить значение другой. Однако в реальности подобная ситуация встречается крайне редко. Если коэффициент корреляции равен, например, 0,8, это означает наличие четкой взаимосвязи. В нашем примере коэффициент корреляции равен 0,785. Если он равен нулю, это указывает на отсутствие какой-либо взаимосвязи. Отрицательные значения означают то же, что и положительные, с единственной разницей: с ростом значения одной переменной значение другой будет не увеличиваться, а уменьшаться.



Расчет коэффициента корреляции с помощью Excel.


Однако этот показатель имеет свои недостатки (ничто не совершенно!). Если взаимосвязь между переменными отсутствует, не следует ожидать, что коэффициент корреляции будет равен нулю. Это будет означать, что данные распределены абсолютно равномерно, что не встречается на практике. Коэффициент корреляции может быть примерно равным нулю, но что именно означает это «примерно равен»?

Кроме того, значение этого коэффициента зависит от объема исходных данных. Если объем исходных данных невелик, а значение коэффициента корреляции далеко от нуля, это не означает наличие корреляции. Если даны всего лишь два значения каждой переменной, то коэффициент корреляции всегда будет равен 1 или —1 вне зависимости от того, присутствует ли корреляция на самом деле.

На следующей диаграмме представлено 35 точек, коэффициент корреляции равен 0,494. Это значение достаточно далеко от нуля, чтобы можно было говорить о присутствии корреляции? Или же это расположение точек можно получить случайным образом и переменные никак не связаны между собой?



Существует ли взаимосвязь между этими переменными?


Чтобы определить, действительно ли полученный коэффициент корреляции свидетельствует о взаимосвязи (или, если говорить на языке статистики, является ли это значение статистически значимым), используем моделирование. Сгенерируем два множества случайных чисел по 35 чисел в каждом. Очевидно, что эти числа будут никак не связаны между собой, однако коэффициент корреляции между ними не будет строго равен нулю, а будет равняться, например, — 0,123. Если мы заново сформируем эти два множества случайным образом и повторим моделирование 10000 раз, то получим 10000 значений коэффициента корреляции между двумя совокупностями из 35 чисел, которые никак не связаны между собой. Чтобы рассчитать эти значения, используем небольшую программу. Результат ее работы представлен на следующей гистограмме. Вертикальной чертой обозначено значение коэффициента корреляции, полученное нами в предыдущем примере, равное 0,494.



Значения коэффициента корреляции для двух совокупностей из 35 не связанных между собой чисел.


Из гистограммы следует, что коэффициент корреляции действительно может принять полученное значение, если переменные не связаны между собой, но очевидно, что вероятность этого крайне мала. Анализ результатов моделирования показывает (на гистограмме это не заметно), что 12 значений больше 0,494, 9 — меньше —0,494. Это означает, что полученное нами значение (или большее) выпадает примерно два раза из 1000, если исходные переменные независимы.

Может ли быть так, что наш случай — именно тот, что выпадает два раза из 1000? Это неизвестно, но маловероятно. Разумнее всего полагать, что проанализированные нами переменные, соответствующие весу и росту 35 женщин в группе из 92 студентов, взаимосвязаны.


Схема рассуждений: проверка статистических гипотез


И в задаче, поставленной перед дегустатором чая, и в задаче о связи между переменными, которую мы только что рассмотрели, нужно ответить, по сути, на один и тот же вопрос: разумно ли считать, что дегустатор может различить вкус чая, приготовленного по-разному? Можно ли считать, что две переменные коррелируют? В обоих случаях, чтобы ответить на этот вопрос, нужно действовать по одной и той же схеме.

1. Нужно сформулировать исходную гипотезу. Чаще выбирается консервативная гипотеза: в задаче о дегустаторе чая мы предполагаем, что он не способен различить чай на вкус, а в задаче о корреляции — что переменные никак не связаны.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика