Читаем Том 13. Абсолютная точность и другие иллюзии. Секреты статистики полностью

Если даны четыре точки, то все значения коэффициента корреляции равновероятны. Если дано пять точек, то наиболее вероятным значением является ноль. По мере роста числа точек начинает вырисовываться традиционный график в форме колокола.

* * *

Еще один пример: сбалансированы ли игральные кости?


В главе 2 упоминается, что в 1850 году швейцарский астроном бросил пару игральных костей (красного и белого цвета) 20000 раз. Полученные результаты были достаточно далеки от ожидаемых теоретических значений. Это дает основания подозревать, что в эксперименте, возможно, использовались несбалансированные игральные кости. Так как все шесть возможных результатов являются равновероятными, если мы бросим игральные кости 20 000 раз, то теоретически каждое значение выпадет 20000/6 = 3333 раза. В следующей таблице представлены результаты эксперимента, теоретические значения и абсолютная величина отклонения от теоретических значений.



Являются ли эти отклонения достаточно большими, чтобы говорить о несбалансированности игральных костей? Или же эти отклонения могут возникнуть случайным образом? В конце концов, если бы результаты эксперимента в точности совпадали бы с теоретическими значениями, это тоже выглядело бы странно. Чтобы развеять сомнения, проверим статистическую гипотезу по той же схеме, что использовал Фишер для решения задачи о дегустаторе чая. Будем предполагать, что игральные кости сбалансированы, и отвергнем эту гипотезу только в том случае, если полученные данные будут явно ей противоречить.

Будем анализировать максимальное отклонение между полученными и теоретическими значениями. В предыдущей таблице показано, что для красного кубика эта величина равна 417, для белого — 599. Зададимся вопросом: каковы ожидаемые значения этой величины для идеально сбалансированных игральных костей? И снова на этот вопрос можно ответить с помощью моделирования.

Смоделируем 20000 бросков игральной кости, подсчитаем, сколько раз выпадет каждое значение, и рассчитаем максимальное отклонение от теоретического значения. При первом моделировании максимальное отклонение равнялось 83, при втором — 97. После того как моделирование было выполнено 10000 раз, была получена гистограмма, представленная на следующем рисунке. На ней также указаны значения, соответствующие красному и белому игральному кубику.



Распределение максимального отклонения для сбалансированных игральных костей и значения, полученные экспериментально.


Очевидно, что данные эксперимента противоречат гипотезе о сбалансированности игральных костей. Если бы эта гипотеза была верна, то вероятность получить подобные данные была бы очень, очень мала. В этом случае р-значение равно нулю с точностью до нескольких знаков после запятой. Следовательно, мы можем утверждать, что игральные кости несбалансированны, а вероятность того, что мы ошибаемся, практически равна нулю.

В качестве показателя, обобщающего данные эксперимента, можно использовать не максимальное отклонение, а величину, в которой учитывается отклонение для всех шести возможных результатов броска игральной кости.

Такой величиной может быть сумма всех отклонений, равных разности фактической и теоретической частоты, возведенных в квадрат (чтобы положительные и отрицательные отклонения не скомпенсировали друг друга), разделенная на теоретическую частоту.

Для красной игральной кости эта величина будет равна


Расчеты могут показаться вам излишне сложными, но эта величина обладает определенным преимуществом: она не требует моделирования распределения для случая, когда нулевая гипотеза верна (так называемого эталонного распределения). Эта величина называется критерий х2 (хи-квадрат). Ее впервые использовал в 1900 году Карл Пирсон, сыгравший важную роль в истории статистики. Мы уже упоминали его имя, когда говорили о коэффициенте корреляции.

Для обычных статистических тестов нет необходимости в моделировании распределения величины. Вместо этого оно выводится с помощью математических методов. Формула для расчета распределения коэффициента корреляции достаточно сложна и не имеет своего названия, хотя при большом размере выборки это распределение близко к нормальному. Первым, кто вывел формулу для этого распределения, был не кто иной, как Рональд Эйлмер Фишер.

* * *

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика