Читаем Том 13. Абсолютная точность и другие иллюзии. Секреты статистики полностью

Другой пример. Мы едем по второстепенной дороге, на которой очень мало машин. Мы замечаем, что на подъеме, где не видно встречную полосу, есть небольшая выбоина. Ее можно объехать, приняв немного левее. Однако мы не станем этого делать. Вероятность того, что по встречной полосе этой пустынной дороги проедет автомобиль, невелика, а вероятность того, что мы встретимся точно на подъеме, — еще меньше. Однако мы не станем выезжать на встречную полосу: несмотря на то что вероятность столкновения крайне мала, если оно все же произойдет, то ущерб будет значительным. Если мы проедем по выбоине, то почувствуем лишь легкое неудобство.

Очевидно, что вероятность ошибки, к которой мы готовы при принятии решения, зависит от обстоятельств и от возможных последствий этой ошибки.

Приведем другой пример, также связанный с дорожным движением, а именно с радарами для измерения скорости проезжающих машин. Хорошо известно, что эти радары, как и любые другие приборы, имеют определенную погрешность измерения. Если они показывают, что скорость машины равна 120 км/ч, возможно, что фактическая скорость равна 119 или 122 км/ч. По этой причине, если на дороге установлено ограничение скорости в 120 км/ч, водителей штрафуют только тогда, когда их скорость превышает ограничение на определенную величину. Это делается для того, чтобы исключить возможное влияние погрешности измерения и гарантировать, что водитель действительно ехал с превышением. Если будет выбрано значение, для которого доля ошибочных значений будет равна 5 % (таким образом, в 5 % случаев будут оштрафованы водители, которые не превышали скорость), это вызовет жаркие споры, ведь каждый день сотни людей будут незаслуженно получать штрафы.

Подведем итог. Выбор граничного значения нельзя делать только с помощью методов статистики; нужно рассматривать конкретную ситуацию. Когда проводится эксперимент, в котором сравнивается эффективность нового и существующего лекарств, выбор граничного значения 0,05 означает, что с вероятностью в 5 % будет сделан ошибочный вывод об эффективности лекарства. Какие последствия это повлечет? Имеет ли новое лекарство серьезные побочные эффекты? Дороже ли новое лекарство, чем то, что уже используется? Ответы на эти вопросы крайне важны при выборе оптимального граничного значения.

Однако верно и то, что во многих случаях значение 0,05 выбирается без какого-либо анализа. Это происходит потому, что для этого значения уже рассчитаны различные статистические показатели, которые можно найти в справочных таблицах. Когда много лет назад эти величины рассчитывались с помощью примитивных средств, в таблицы заносились лишь значения, соответствующие определенным вероятностям, в частности 0,001; 0,005; 0,01; 0,05; 0,10. Из возможных табличных значений в качестве границы, отделяющей «обычное» от «необычного», чаще всего выбиралось именно 0,05. Преимущество этого значения в том, что это круглое число в нашей десятичной системе счисления. Если бы у нас на руках было по шесть пальцев, то в качестве граничного значения было бы естественно выбрать 0,06.

Глава 5

Что лучше? Что эффективнее? Как формировать выборки для ответов на подобные вопросы

Статистику необходимо использовать тогда, когда для ответа на вопрос нужно собрать и проанализировать данные. К таким вопросам относятся, например, вопросы об эффективности вакцины или лекарства, о прочности нового способа сварки и другие.

Как правило, сбор данных — трудоемкая и дорогостоящая операция. Следует тщательно продумать, каков оптимальный способ решения этой задачи, позволяющий потратить минимум ресурсов. Кроме того, почти никогда не удается получить все необходимые данные и нужно знать, как извлечь из них максимальную выгоду. Не стоит забывать и о вариации данных, которые не подчиняются строгим математическим законам, и при одних и тех же исходных данных результаты могут различаться.

Если нужно ответить на вопрос, снижает ли регулярный прием определенной дозы аспирина вероятность инфаркта, это можно сделать на основе рассуждений о действии аспирина на организм, однако во многих случаях реальность преподносит немало сюрпризов. Точнее всего на этот вопрос можно ответить, если собрать экспериментальные данные. Нужно сформировать две группы людей, обладающих как можно более схожими признаками, одной группе прописать аспирин, другой — нет, после чего сравнить результаты. Нам известно, что не все участники исследования одинаковы, поэтому реакция на аспирин у них будет различаться. Нужно учесть все эти факторы и сделать корректные выводы, указав степень их надежности. Именно этим и занимается статистика.


Крупномасштабное исследование: вакцина против полиомиелита


Возможность сделать прививку и обезопасить себя от инфекционного заболевания, вне всяких сомнений, стала одним из решающих этапов в борьбе с болезнями, помогла улучшить здоровье людей и повысить ожидаемую продолжительность жизни.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика