Но теперь мы даже знаем, какой нам взять величину γ, ибо она связана с проводимостью металла. В гл. 43 (вып. 4) мы обсудили связь проводимости металлов с диффузией свободных электронов в кристалле. Электроны движутся по ломаному пути от одного соударения до другого, а между этими толчками они летят свободно, за исключением ускорения из-за какого-то среднего электрического поля (фиг. 32.2).
Там же, в гл. 43 (вып. 4), мы нашли, что средняя скорость дрейфа равна просто произведению ускорения на среднее время между соударениями τ. Ускорение равно
В этой формуле поле Е
считается постоянным, так что скорость vдрейф тоже постоянна. Поскольку в среднем ускорение отсутствует, сила торможения равна приложенной силе. Мы определили γ через силу торможения, равную γНесмотря на то что мы не можем с легкостью измерять непосредственно τ, можно определять его, измеряя проводимость металла. Экспериментально обнаружено, что электрическое поле Е
порождает в металлах ток с плотностью j, пропорциональной Е (для изотропного материала, конечно):причем постоянная пропорциональности σ называется
В точности то же самое мы ожидаем из выражения (32.39), если положить
тогда
Таким образом, τ, а следовательно, и γ могут быть связаны с наблюдаемой электрической проводимостью. Используя (32.40) и (32.41), можно переписать нашу формулу (32.38) для показателя преломления в виде
где
Это и есть известная формула для показателя преломления в металлах.
§ 7. Низкочастотное и высокочастотное приближения; глубина скин-слоя и плазменная частота
Наш результат для показателя преломления в металлах —формула (32.42) — предсказывает для распространения волн с разными частотами совершенно различные характеристики. Прежде всего давайте посмотрим, что получается при
Возведением в квадрат[45]
можно проверить, чтотаким образом, для низких частот
Вещественная и мнимая части
Запишем это в виде
где δ — это то расстояние, на котором амплитуда волны уменьшается в е=2,72 раза, т. е. приблизительно в 3 раза. Амплитуда такой волны, как функция от
Поскольку электромагнитные волны проникают в глубь металла только на это расстояние, величина δ называется
Но что все-таки мы понимаем под «низкими» частотами? Взглянув на уравнение (32.42), мы видим, что его можно приближенно заменить уравнением (32.44), только когда ωτ много меньше единицы и
и
Давайте посмотрим, какие частоты соответствуют этому приближению для такого типичного металла, как медь. Для вычисления τ воспользуемся уравнением (32.43), а для вычисления σ/ε0
— известными значениями σ и ε0. Справочник дает нам такие данные:Если мы предположим, что на каждый атом приходится по одному свободному электрону, то число электронов в кубическом метре будет равно
Используя далее
получаем
Таким образом, для частот, меньших чем приблизительно 1012
Для таких волн глубина скин-слоя равна
Для микроволн с частотой 10 000
т. е. волны проникают на очень малое расстояние.
Теперь вы видите, почему при изучении полостей (и волноводов) нам нужно беспокоиться только о полях внутри полости, а не о волнах в металле или вне полости. Кроме того, мы видим, почему серебрение или золочение полости уменьшает потери в ней. Ведь потери происходят благодаря токам, которые ощутимы только в тонком слое, равном глубине скин-слоя.
Рассмотрим теперь показатель преломления в металле типа меди при высоких частотах. Для очень высоких частот ωτ много больше единицы, и уравнение (32.42) очень хорошо аппроксимируется следующим:
Для высокочастотных волн показатель преломления в металлах становится чисто вещественным и меньшим единицы! Это следует также из выражения (32.38), если пренебречь диссипативным членом с γ, что может быть сделано при очень больших значениях ω. Выражение (32.38) дает при этом