Читаем Том 2. Электромагнетизм и материя полностью

Хотя в качестве иллюстрации мы взяли случай, когда значение Р1 равно нулю, ибо в области 1 у нас был вакуум, ясно, что те же аргументы приложимы для любого материала в этих двух областях, так что уравнение (33.26) верно в общем случае. Давайте перейдем к остальным уравнениям Максвелла и посмотрим, что скажет нам каждое из них. Следующим мы возьмем уравнение (33.22,а). У него нет производной по х, так что оно ничего нам не говорит. (Вспомните, что на границе сами поля не особенно велики. Только их производные по х могут стать столь огромными, что будут доминировать в уравнении.) Взглянем теперь на уравнение (33.22,б). Смотрите! Именно здесь у нас есть производная по х! С левой стороны имеется ∂Ez/∂x. Предположим, что эта производная громадна. Но минуточку терпения! С правой стороны нет ничего, способного потягаться с ней, поэтому Еz не может иметь скачка при переходе из области 1 к области 2. [Если бы это было так, то с левой стороны уравнения (33.22,а) мы бы получили скачок, а с правой — его не было бы, и уравнение оказалось бы неверным.] Итак, мы получили новое условие:

(33.27)

После тех же самых рассуждений уравнение (33.22,в) дает

(33.28)

Последний результат в точности совпадает с полученным с помощью контурного интеграла условием (33.20).

Перейдем к уравнению (33.23). Единственное, что может дать пик, — это ∂Вх/∂х. Но справа опять нет ничего, способного противостоять ему; в результате мы заключаем, что

(33.29)

И, наконец, последнее из уравнений Максвелла! Уравнение (33.24а) ничего не дает, ибо там нет производных по х. В уравнении (33.236) — одна производная: — с2(∂Вz/∂х), но ей снова нечего противопоставить с другой стороны равенства, поэтому мы получаем

(33.30)

Совершенно аналогично второе уравнение, которое дает

(33.31)

Итак, последние три условия говорят нам, что В2=В1.

Хочу здесь подчеркнуть, что такой результат получен только потому, что по обеим сторонам границы мы взяли немагнитный материал, вернее, потому, что магнитным эффектом этих материалов мы можем пренебречь. Обычно это вполне допустимо для большинства материалов, за исключением ферромагнетиков. (Магнитные свойства материалов мы будем рассматривать в последующих главах.).

Наша программа привела нас к шести соотношениям между полями в областях 1 и 2. Все они выписаны в табл. 33.1. Их можно использовать для согласования волн в двух областях.


Таблица 33.1. граничные условия на поверхности ДИЭЛЕКТРИКА

Однако я хочу отметить, что идея, которую мы только что использовали, будет работать в любой физической ситуации, где у вас есть дифференциальные уравнения и требуется найти решение в области, пересекаемой резкой границей, по обе стороны которой некоторые из физических свойств различны. Для наших теперешних целей было бы легче получить те же самые уравнения с помощью рассуждений о потоках и циркуляциях на границе. (Проверьте, можно ли подобным путем получить те же самые результаты.) Однако теперь вы знаете метод, который будет хорош, даже когда вы попали в затруднительное положение и не видите простых физических соображений относительно того, что происходит на границе. Вы можете просто воспользоваться дифференциальными уравнениями.

§ 4. Отраженная и преломленная волны

Теперь мы готовы применить наши граничные условия к волнам, перечисленным в § 2, где мы получили:

(33.32)

(33.33)

(33.34)

(33.35)

(33.36)

(33.37)

Нами получены еще кое-какие сведения: вектор Е перпендикулярен для каждой волны вектору распространения k.

Полученный результат будет зависеть от направления вектора Е («поляризации») в падающей волне. Анализ сильно упростится, если мы рассмотрим отдельно случай, когда вектор Е параллелен «плоскости падения» (т. е. плоскости ху), и случай, когда он перпендикулярен к ней. Волна с любой другой поляризацией будет просто линейной комбинацией этих волн. Другими словами, отраженные и преломленные интенсивности для различных поляризаций будут разными и легче всего отобрать два простейших случая и отдельно рассмотреть их.

Я подробно проанализирую случай падающей волны, перпендикулярной к плоскости падения, а потом просто опишу вам, что получается в других случаях. Я немного жульничаю, рассматривая простейший пример, однако в обоих случаях принцип один и тот же. Итак, мы считаем, что вектор Еi имеет только z-компоненту, а поскольку все векторы Е смотрят в одном и том же направлении, векторный значок можно опустить.

Оба материала изотропны, поэтому вынужденные колебания зарядов в материале будут происходить в направлении оси z и у полей Е в преломленной и отраженной волнах тоже будет только одна z-компонента. Таким образом, для всех волн Ех и Еy, Рх и Рy равны нулю. Направления векторов Е и В в этих волнах показаны на фиг. 33.6.

Фиг. 33.6. Поляризации отраженной и преломленной волн, когда поле Е в падающей волне перпендикулярно к плоскости падения.


Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука
Квантовые миры и возникновение пространства-времени
Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей.Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени.Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались. Популяризаторы постоянно твердят, что квантовая механика – это что-то странное, недоступное для понимания… Чтобы все встало на свои места, достаточно признать, что во Вселенной мы существуем не в одном экземпляре. Шонов Кэрроллов бесконечно много. Как и каждого из нас.Тысячи раз в секунду во Вселенной возникают все новые и новые наши копии. Каждый раз, когда происходит квантовое событие, мир дублируется, создавая копию, в которой квантовое событие так и не произошло.В квантовой механике нет ничего мистического или необъяснимого. Это просто физика.В формате PDF A4 сохранён издательский дизайн.

Шон Б. Кэрролл , Шон Майкл Кэрролл

Физика / Зарубежная образовательная литература / Образование и наука