Попробуем обсудить аналогичную задачу в случае магнетизма. Легче всего и короче просто сказать, что М
— магнитный момент единицы объема (намагниченность) — в точности аналогичен Р — электрическому дипольному моменту единицы объема (поляризация) и что, следовательно, отрицательная дивергенция М эквивалентна «плотности магнитных зарядов» ρm, что бы это ни означало. Но беда в том, что в физическом мире не существует такой штуки, как «магнитный заряд». Как мы знаем, дивергенция В всегда равна нулю. Это, однако, не помешает нам провести искусственнуюно нужно понимать, что ρm
— величина чисто математическая. Затем мы можем все делать полностью аналогично электростатике и использовать все старые электростатические уравнения. К этому часто прибегают. Когда-то такая аналогия считалась даже правильной. Ученые верили, что ρМикроскопические плотности токов в намагниченном веществе, разумеется, очень сложны. Их величина зависит от местоположения в атоме: в некоторых местах они велики, в других — малы, в одной части они текут в одну сторону, а в другой — в противоположную (точно так же, как микроскопическое электрическое поле, которое внутри диэлектрика в высшей степени неоднородно). Однако во многих практических задачах нас интересуют только поля вне вещества или
Разобьем плотность тока j
, которая является реальным источником магнитных полей, на разные части; одна из них описывает циркулирующие токи атомных магнитиков, а остальные — другие возможные токи. Обычно удобнее делить токи на три части. В гл. 32 мы делали различие между токами, свободно текущими по проводникам, и токами, обусловленными движением связанных зарядов в диэлектрике то туда, то сюда. В гл. 32, §2, мы писалипричем величина j
пол представляла токи от движения связанных зарядов в диэлектриках, а jдp — все другие токи. Пойдем дальше. Я хочу из jдр выделить часть jмar, которая описывает усредненные токи внутри намагниченных материалов, и дополнительный член, который мы будем называть jпров и который будет описывать все остальное. Он, вообще говоря, относится к токам в проводниках, но может описывать и другие токи, например токи зарядов, движущихся свободно через пустое пространство. Таким образом, полную плотность тока мы будем писать в видеРазумеется, именно этот ток входит в уравнение Максвелла с ротором В
:Теперь мы должны связать ток j
маг с величиной вектора намагниченности М. Чтобы вы представляли, к чему мы стремимся, скажу, что должен получиться такой результат:Если в магнитном материале нам всюду задан вектор намагниченности М
, то плотность циркуляционного тока определяется ротором М. Посмотрим, можно ли понять, почему так происходит.Сначала возьмем цилиндрический стержень, равномерно намагниченный параллельно его оси. Мы знаем, что физически такая равномерная намагниченность означает на самом деле однородную повсюду внутри материала плотность атомных циркулирующих токов. Попытаемся представить себе, как выглядят эти реальные токи в поперечном сечении стержня. Мы ожидаем увидеть токи, напоминающие изображенные на фиг. 36.2.