Читаем Том 22. Сон разума. Математическая логика и ее парадоксы полностью

Страница «Исчисления понятий» Гэтлоба Фреге.

Конечно, это определение несколько расплывчато, поэтому давайте одним махом разберемся со всеми множествами такого типа. Обозначим через R (по первой букве фамилии Рассела) множество всех множеств, которые не содержат сами себя в качестве своего элемента: к R будет принадлежать множество котов, столов и все совокупности предметов, не содержащие сами себя. И все будет в порядке, пока мы не пересекаем границу, отделяющую R от остальных множеств.

Различие между множеством всех котов, которое не является котом (рис. 1), и множеством всего, что только можно себе представить, которое также можно себе представить (рис. 2).

(Источник: Умберто Эко, Vertige de la liste, Париж, издательство Flammarion, 2009, стр. 396).

Парадокс возникает, когда мы задаемся вопросом, по какую сторону этой воображаемой границы находится само R: любой ответ на этот вопрос приведет к противоречию. Предположим, что множество принадлежит само себе. Тогда обладает свойством, которое мы хотели устранить, следовательно, оно не может принадлежать к множеству всех множеств, которые не принадлежат самим себе. Но что это за множество? Это вновь множество R! Следовательно, если R принадлежит само себе, то не принадлежит само себе. Пока что все в порядке: может случиться, что R не принадлежит само себе и, исходя из этой гипотезы, мы не придем к противоречию. Посмотрим, что произойдет, если мы будем считать, что R не принадлежит само себе. В этом случае R будет обладать свойством, которое определяет множество всех множеств, не принадлежащих самим себе, следовательно, R будет принадлежать этому множеству. Иными словами, если R не принадлежит само себе, то R принадлежит само себе. Оба этих вывода нарушают основной принцип, восходящий к трудам философа Парменида, который в своей дидактической поэме «О природе» показал, что нет промежуточных путей между бытием и небытием.

Математическая формулировка этого принципа гласит, что элемент либо принадлежит множеству, либо нет. Так как любой третий вариант исключен, в математике этот принцип называется законом исключенного третьего.

Чтобы объяснить свой парадокс простыми словами, Рассел описал город, где по закону брадобрей должен брить только тех, кто не бреет себя сам. Мы заменили свойство «принадлежать самому себе» на «бриться самому», и теперь в роли множества R будет выступать брадобрей. В этой версии парадокса возникает вопрос: кто бреет брадобрея? Если он бреет себя сам, то принадлежит к числу тех, кого по закону ему брить нельзя. Если же он не бреет себя сам, то по закону он должен брить себя сам. Что бы они ни делал, он окажется в тюрьме, где, возможно, некий логик попытается убедить его, что провести несколько лет в тюрьме всегда лучше, чем столкнуться с противоречием, которое ставит под сомнение правильность всей математики двух тысячелетий.

В другой версии парадокса брадобрей заменен на библиотекаря, которому нужно навести порядок в библиотеке — такой большой, что для нее требуется каталог, содержащий все каталоги. Кто-то предложил, что было бы неплохо отделить каталоги, которые содержат ссылки на самих себя, от каталогов, которые не содержат таких ссылок. Это предложение понравилось библиотекарю, и он принялся за работу.

В течение многих лет он работал днями и ночами, и вот, когда он осмотрел одну за другой все полки, ему осталось решить, куда следует поместить объемистый каталог, в составление которого он вложил столько сил. Если этот каталог содержит ссылку на самого себя, его нельзя включить в каталог всех каталогов, которые не содержат ссылку на себя. Если, напротив, этот каталог не содержит ссылки на себя самого, его нужно включить в каталог всех каталогов, которые не содержат ссылку на себя. Если он принадлежит к такому каталогу, то не принадлежит ему, и наоборот. Лишь в этот момент библиотекарь понял, что все его труды оказались напрасными: предложенный критерий не позволит составить полную классификацию.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное