Читаем Том 22. Сон разума. Математическая логика и ее парадоксы полностью

Представим себе машину Тьюринга, задача которой — записать определенную последовательность нулей и единиц, которую мы назовем s. Как вы увидели из предыдущей главы, машине нужно дать последовательность инструкций вида «Если считано 1, сместиться вправо и перейти к инструкции № 2». В этом упрощенном варианте мы говорим, что сложностью s является натуральное число n, если существует машина Тьюринга, описанная посредством n инструкций, выходным значением которой является s, и если никакая машина не может сгенерировать заданную последовательность за меньшее число инструкций. Таким образом определяется функция К (по первой букве фамилии Колмогорова), которая сопоставляет каждой последовательности нулей и единиц ее сложность. Рассмотрим последовательность 1111… Если подать на вход машины Тьюринга ленту, на которой записаны только нули и единственная инструкция которой гласит «Инструкция № 1: Если считан 0, записать 1 и перейти к инструкции № 1. Если считан 1, сместиться вправо и перейти к инструкции № 1», то в результате мы получим последовательность 1111… Это означает, что заданная последовательность имеет минимально возможную сложность К(s) = 1, так как для ее описания достаточно единственной инструкции.

Живительное следствие этого определения сложности состоит в том, что компьютеры не могут генерировать бесконечные случайные последовательности нулей и единиц. Интуитивно понятно, что последовательность является случайной, когда невозможно предсказать, каким будет ее следующий элемент. Это означает, что описание случайной последовательности не может быть короче, чем сама последовательность.

Иными словами, ее сложность бесконечно велика. Однако все компьютерные программы содержат конечное число инструкций (вспомните определение машины Тьюринга из предыдущей главы). Следовательно, генерируемые ими последовательности нулей и единиц, сколь случайными бы они ни казались, всегда будут иметь конечную сложность. Компьютеры могут воспроизводить только псевдослучайные последовательности, поэтому для генерирования истинно случайных последовательностей многие физики пытаются использовать недетерминированность атомов.

С другой стороны, определение сложности по Колмогорову во многом схоже с парадоксом библиотекаря, о котором мы рассказали в конце главы 2, где рассматривается множество натуральных чисел, которые можно описать пятнадцатью словами. Так как число фраз, состоящих из пятнадцати слов, является конечным, множество таких чисел также будет конечным. Следовательно, среди всех чисел, не принадлежащих этому множеству, можно определить наименьшее. Обозначим его за n. Однако в этом случае n будет «наименьшим числом, которое нельзя описать менее чем пятнадцатью словами» — это описание содержит всего девять слов!

Логично задаться вопросом, не приведет ли введенное нами определение сложности к противоречиям. Ответ удивляет: если бы функция К была вычислимой, то есть если бы существовала машина Тьюринга, способная вычислить для данной последовательности нулей и единиц s сложность К(s), то рассуждения, аналогичные тем, что мы использовали при решении проблемы остановки, позволили бы воспроизвести парадокс библиотекаря на формальном языке арифметики. Следовательно, единственно возможный ответ таков: сложность не является вычислимой, и этого достаточно для разрешения парадокса библиотекаря, который оставался открытым: выражение «описать пятнадцатью словами» некорректно, так как принадлежит не к языку, а к метаязыку.

Гёдель, Тьюринг и искусственный интеллект

На предыдущих страницах мы ограничились обсуждением приятия сложности исключительно с точки зрения математики, и читатель убедился, что определение этого понятия сопряжено с многочисленными трудностями. Наша изначальная цель была еще более амбициозной: мы хотели узнать, как измеряется сложность понятий «любовь» и «справедливость». Постепенно все новые и новые математические открытия вдохновили исследователей на создание новой теории сложности, которую можно обобщить фразой «целое больше, чем сумма его частей». Слова «сияние», «рана», «солнце» и «ближайший» имеют четкие значения — мы можем узнать их в словаре. Но когда французский поэт Рене Шар пишет «Сияние — рана, ближайшая к солнцу», из четырех прекрасно знакомых нам слов рождается нечто новое.

Стих представляет собой нечто большее, чем сумму слов, поэтому понять поэзию непросто.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное