Читаем Том 22. Сон разума. Математическая логика и ее парадоксы полностью

Эта эмерджентность присуща не только языку — она характерна для так называемых общественных насекомых, с ее помощью объясняется успех интернета, и она является одним из ключей к изучению нервных систем живых существ. Представим себе, например, крохотного муравья, который в поисках пищи следует алгоритмам, заложенным в его генах. Мы никогда не смогли бы понять сложную организацию муравейника, способного приспосабливаться к экстремальным ситуациям, если бы рассматривали его исключительно как совокупность отдельных муравьев. Иммунная система также представляет собой нечто большее, чем совокупность клеток, экономика есть нечто большее, чем множество покупателей акций, а интернет — это нечто большее, чем сумма отдельных действий пользователей из разных уголков планеты. Понять, каким образом из относительной простоты отдельных компонентов этих систем возникает сложное единое целое — одна из величайших задач науки начала нынешнего столетия.

Хотя определение сложной системы как системы, в которой целое больше суммы его частей, довольно приблизительно, нет сомнений, что оно весьма точно описывает наш мозг. В этом случае отдельными компонентами системы являются нейроны — клетки, получающие импульсы, обрабатывающие их и передающие их другим нейронам посредством множества отростков. Среди исследователей мозга распространено мнение, согласно которому сеть связей, благодаря которым мозг становится чем-то большим, чем просто совокупностью отдельных нейронов, лежит в основе таких явлений, как восприятие, разум и чувства. А если бы мы могли воссоздать подобную структуру в информатике? Первые попытки математического моделирования нейронов упоминаются в статье, опубликованной в 1943 году, в которой невролог Уоррен Маккалок и логик Уолтер Питтс определили нейрон как функцию, которая на основе ряда входных значений выдает единственное выходное значение.

До этого момента все функции, рассмотренные в этой книге, имели единственное входное значение и преобразовывали его в другое значение посредством ряда операций. Однако в реальной жизни очень и очень немногие явления определяются всего одним параметром. Современная теория искусственных нейронных сетей, созданная на основе идей Питтса и Маккалока, позволяет имитировать работу мозга с помощью функций от нескольких параметров. Предположим, что мы хотим вычислить значение функции f, которое зависит от чисел х1, x2, … хn. Основная идея здесь заключается в том, что программа, в которую передаются эти числа, обрабатывает их подобно тому, как ядро нейрона обрабатывает электрические импульсы, поступающие по отросткам. Так как величина этих импульсов может отличаться, для каждого числа х нужно указать еще одно число, ил, которое называется весом и обозначает важность каждого электрического импульса по отношению к остальным. Например, если w1 и wn намного больше, чем w2, w3wn-1 это означает, что на результирующее значение оказывают наибольшее влияние первый и последний импульс. На основе весов импульсов в искусственной нейронной сети рассчитывается взвешенная сумма s = w1x1 + w2x2 + … + wnxn и находится значение функции, как показано на рисунке.

Новизна нейронных сетей заключается в том, что программа, с помощью которой мы хотим решить задачу, представляет собой не фиксированный, а открытый алгоритм, веса в котором могут изменяться. В действительности всякая нейронная сеть обычно проходит фазу обучения, на которой программа методом проб и ошибок «узнает», какие веса являются наиболее походящими, или, иными словами, какие входные сигналы следует учитывать в большей степени, чтобы итоговый результат был удовлетворительным. Если задача нашей нейронной сети заключается, например, в распознавании человеческого голоса и в ходе обучения выясняется, что большую часть первого импульса составляет фоновый шум, то сеть не будет придавать первому импульсу особого значения. Нейронные сети также очень эффективны при составлении метеорологических прогнозов и при решении задач, подобных задаче коммивояжера. Компьютеры, в которых используются нейронные сети и другие передовые алгоритмы, способны решить задачу коммивояжера уже для двухсот городов.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное