Читаем Том 3. Квантовая механика полностью

Правильное квантовомеханическое уравнение движения электрона в пустом пространстве впервые было открыто Шредингером. При движении по прямой оно имеет вид (14.12); надо только mэфф заменить на m — массу электрона в пустом пространстве. При движении по прямой в пустом пространстве уравнение Шредингера имеет вид

(14.13)

Мы не хотим, чтобы вы считали, будто мы сейчас вывели уравнение Шредингера; мы только показываем вам один из способов, каким его можно осмыслить. Когда Шредингер впервые написал его, он привел какой-то вывод, опиравшийся на эвристические доводы и блестящие интуитивные догадки. Некоторые из его доводов были даже неверны, но это не имело значения; важно то, что окончательное уравнение дает правильное описание природы. И цель нашего обсуждения состоит просто в том, чтобы показать вам, что правильное фундаментальное квантовомеханическое уравнение (14.13) имеет ту же самую форму, какая получается в предельном случае электрона, движущегося вдоль цепочки атомов. Это значит, что можно считать, что дифференциальное уравнение (14.13) описывает диффузию амплитуды вероятности от точки к точке вдоль прямой. Иначе говоря, если электрон имеет некоторую амплитуду того, что он будет в одной точке, то чуть позже у него появится амплитуда того, что он будет в близлежащих точках. Уравнение действительно напоминает уравнения диффузии, которыми мы пользовались в начале курса. Но есть и одно важное отличие: мнимый коэффициент перед производной по времени приводит к поведению, в корне отличному от обычной диффузии (например, от диффузии газа, распространяющегося по длинной трубе). Обычная диффузия приводит к действительным экспоненциальным решениям, а решения (14.13) суть комплексные волны.

<p><strong>§ 2. Волновая функция</strong></p>

Чтобы получить некоторое представление о том, как теперь все будет выглядеть, вернемся к самому началу и изучим проблему описания движения электрона по прямой, не рассматривая состояний, связанных с атомами решетки. Мы хотим возвратиться к самому началу и посмотреть, какими представлениями нужно пользоваться, чтобы описать движение свободной частицы в пространстве. Раз нас интересует поведение частицы вдоль континуума точек, то придется иметь дело с бесконечным множеством возможных состояний и, как вы увидите, идеи, которые были развиты для конечного числа состояний, потребуют некоторых технических видоизменений.

Начнем с того, что вектором состояния |х> обозначим состояние, в котором частица расположена в точности в точке с координатой х. Для каждого значения х вдоль прямой — для 1,73, для 9,67, для 10,00 и т. д.— имеется соответствующее состояние. Выберем эти состояния |х> в качестве базисных. Если это сделать для всех точек х прямой, то получится полная совокупность состояний для движения в одном измерении. Теперь положим, что имеется состояние другого рода, скажем |ψ>, в котором электрон как-то распределен вдоль прямой. Один из способов описать это состояние — задать все амплитуды того, что электрон будет также найден в каждом из базисных состояний |x>. Надо задать бесконечную совокупность амплитуд, по одной для каждого х. Запишем их в виде <x|ψ>. Каждая из этих амплитуд — комплексное число, и поскольку для каждого значения х существует одно такое число, амплитуда <x|ψ> является в действительности просто функцией х. Запишем ее также в виде С(х):

(14.14)

Мы уже рассматривали такие амплитуды, которые непрерывным образом меняются с координатами, говоря в гл. 5 (вып. 8) об изменениях амплитуд во времени. Мы, например, показали там, что следует ожидать, что частица с определенным импульсом будет обладать особым типом изменения своей амплитуды во времени. Если частица имеет определенный импульс р и соответствующую ему определенную энергию Е, то амплитуда того, что она будет обнаружена в любом заданном месте x, такова:

(14.15)

Это уравнение выражает важный общий принцип квантовой механики, который связывает базисные состояния, соответствующие различным положениям в пространстве, с другой системой базисных состояний — со всеми состояниями определенного импульса. В некоторых задачах состояния определенного импульса удобнее, чем состояния с определенным х. И любая другая система базисных состояний также годится для описания квантовомеханической ситуации. К связи между ними мы еще вернемся. А сейчас мы по-прежнему будем придерживаться описания на языке состояний |х>.

Прежде чем продолжать, прибегнем к небольшой замене обозначений, которая, надеемся, вас не слишком смутит. Форма функции С(х), определенной уравнением (14.14), естественно, будет зависеть от рассматриваемого состояния |ψ>. Это нужно как-то отметить. Можно, например, указать, о какой функции С(х) идет речь, поставив снизу индекс, скажем Сψ(х). Хотя такое обозначение вполне подошло бы, но оно все же чуточку громоздко и в большинстве книг вы его не встретите. Обычно просто убирают букву С и пользуются символом ψ для определения функции

(14.16)

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги