А вероятность того, что у электрона будет обнаружен импульс р, выразится квадратом абсолютной величины этой амплитуды. Но опять возникает тот же вопрос насчет нормирования. Ведь вообще можно говорить только о вероятности обнаружить электрон с импульсом в узкой области dp близ значения р. Вероятность того, что импульс в точности равен р, равна нулю (разве что состояние |ψ> окажется состоянием с определенным импульсом). Только вероятность обнаружить импульс в интервале dp возле значения р может оказаться конечной. Нормировку можно делать по-разному. Мы выберем тот способ нормировки, который нам кажется особенно удобным, хотя вам сейчас это может так и не показаться.
Примем такую нормировку, чтобы вероятность была связана с амплитудой равенством
(14.22)
Это определение дает нам нормировку амплитуды <имп. р|x>. Амплитуда <имп. р|х>, естественно, комплексно сопряжена с амплитудой <х|имп. р>, а последнюю мы писали в (14.15). При нашей нормировке оказывается, что коэффициент пропорциональности перед экспонентой как раз равен единице, т. е.
(14.23)
Тогда (14.21) превращается в
(14.24)
Вместе с (14.22) это уравнение позволяет находить распределение импульсов для любого состояния |ψ>.
Возьмем частный пример: скажем, когда электрон расположен в некоторой области вокруг х=0. Пусть мы взяли волновую функцию вида
(14.25)
Распределение вероятности иметь то или иное значение х для такой волновой функции дается ее квадратом
(14.26)
Функция плотности вероятности Р(х) — это кривая Гаусса, показанная на фиг. 14.1.
фиг. 14.1. Плотность вероятности для волновой функции (14.24).
Большая часть вероятности сосредоточена между х=+σ и х=-σ. Мы говорим, что «полуширина» кривой есть σ. (Точнее, σ равняется средней квадратичной координате х, если разброс координат соответствует этому распределению.) Коэффициент К следовало бы выбрать так, чтобы плотность вероятности Р(х) не просто была пропорциональна вероятности (на единицу длины x) обнаружить электрон, но имела бы такой масштаб, чтобы Р(х)Δx равнялось вероятности обнаружить электрон в Δx вблизи х. Коэффициент К, при котором так и получается, можно найти из требования -∞∫+∞Р(х)dx=1, потому что вероятность обнаружить электрон где попало равна единице. Мы находим, что К=(2πσ2)-1/4.[56]
Теперь найдем распределение по импульсу. Пусть φ(p) есть амплитуда того, что импульс электрона окажется равным р:
(14.27)
Подстановка (14.25) в (14.24) дает
(14.28)
что можно также переписать в форме
(14.29)
Сделаем теперь замену u=x+2ipσ2/ℏ; интеграл обратится в
(14.30)
Математикам, вероятно, не понравился бы такой путь расчета, однако итог, несмотря на это, верен:
(14.31)
Мы пришли к интересному результату — распределение амплитуд по р имеет в точности ту же математическую форму, как и распределение амплитуд по х, только ширина кривой Гаусса иная. Можно записать это так:
(14.32)
где полуширина η распределения по р связана с полушириной σ распределения по х формулой
(14.33)
Наш результат утверждает: если сделать распределение по х очень узким, взяв σ малым, то η станет большим и распределение по р сильно расползется. Или наоборот, если распределение по р узко, то оно соответствует широкому распределению по х. Мы можем, если угодно, рассматривать η и σ как некую меру неопределенности локализации импульса и координаты электрона в изучаемом нами состоянии. Если обозначить их соответственно Δр и Δx, то (14.33) обратится в
(14.34)
Интересно вот что: можно доказать, что при всяком ином виде распределения по х или по р произведение ΔpΔx не может стать меньше, чем у нас получилось. Гауссово распределение дает наименьшее возможное значение произведения средних квадратичных. В общем случае
(14.35)
Это количественная формулировка принципа неопределенности Гейзенберга, который качественно нам уже давно известен. Мы обычно делали приближенное утверждение: наименьшее значение произведения ΔpΔx — это число порядка ℏ.
§ 4. Нормировка состояний с определенной координатой х
Теперь мы вернемся к обсуждению тех изменений в наших основных уравнениях, которые необходимо сделать для работы с континуумом базисных состояний. Когда имеется конечное число дискретных состояний, то фундаментальное условие, которому должна удовлетворять система базисных состояний, имеет вид
(14.36)