Читаем Том 3. Квантовая механика полностью

Поразительно простой результат! Заметьте: ответ согласуется с тем, что ожидалось при t=0. Мы получаем А+(0)=1, и это вполне правильно, потому что сперва и было предположено, что при t=0 мюон был в состоянии (+x).

Вероятность Р+ того, что мюон окажется в состоянии (+х) в момент t, есть (А+)2, т. е.

Вероятность колеблется от нуля до единицы, как показано на фиг. 5.10.

Фиг. 5.10. Временная зависимость вepoятности того что частица со спином1/2окажется в состоянии (+) по отношению оси х.

Заметьте, что вероятность возвращается к единице при μBt/=π (а не при 2π). Из-за того что косинус возведен в квадрат, вероятность повторяется с частотой 2μВ/.

Итак, мы обнаружили, что шанс поймать в электронном счетчике, показанном на фиг. 5.9, распадный электрон периодически меняется с величиной интервала времени, в течение которого мюон сидел в магнитном поле. Частота зависит от магнитного момента μ. Именно таким образом и был на самом деле измерен магнитный момент мюона.

Тем же методом, конечно, можно воспользоваться, чтобы ответить на другие вопросы, касающиеся распада мюона. Например, как зависит от времени t шанс заметить распадный электрон в направлении у, под 90° к направлению х, но по-прежнему под прямым углом к полю? Если вы решите эту задачу, то увидите, что вероятность оказаться в состоянии (+у) меняется как cos2{(μBt/)-(π/4)}; она колеблется с тем же периодом, но достигает максимума на четверть цикла позже, когда μВt/ℏ=π/4. На самом-то деле происходит вот что: с течением времени мюон проходит через последовательность состояний, отвечающих полной поляризации в направлении, которое непрерывно вращается вокруг оси z. Это можно описать, говоря, что спин прецессирует с частотой

(5.38)

Вам должно становиться понятно, в какую форму выливается квантовомеханическое описание, когда мы описываем поведение чего-либо во времени.

<p><strong>Глава 6 ГАМИЛЬТОНОВА МАТРИЦА</strong></p>

Повторить: гл. 49) (вып. 4) «Собственные колебания»

<p><strong>§ 1. Амплитуды и векторы</strong></p>

Прежде чем приступить к основной теме этой главы, мы хотели бы изложить несколько математических идей, которые часто встречаются в книгах по квантовой механике. Знание их облегчит вам чтение других книг или статей по этому предмету. Первая идея — это тесное математическое подобие между уравнениями квантовой механики и формулами для скалярного произведения двух векторов. Вы помните, что если χ и φ — два состояния, то амплитуда начать в φ и кончить в χ может быть записана в виде суммы (по полной совокупности базисных состояний) амплитуд перехода из φ в одно из базисных состояний и затем из этого базисного состояния уже в χ:

(6.1)

Мы объясняли это при помощи прибора Штерна—Герлаха, но сейчас напоминаем вам, что в этих приборах нет нужды. Уравнение (6.1) — это математический закон, который верен всегда, все равно, есть ли у нас фильтровальное оборудование или нет; вообще совсем не обязательно воображать наличие какого-то прибора. Можно рассматривать это просто как формулу для амплитуды <χ|φ>.

Сопоставим (6.1) с формулой для скалярного произведения двух векторов В и А. Если В и А — обычные трехмерные векторы, то скалярное произведение можно написать так:

считая, что символ еi обозначает любой из трех единичных векторов в направлениях х, у и z. Тогда B·e1— это то, что обычно называют Вх, а В·е2— то, что обычно называют By, и т. д. Значит, (6.2) эквивалентно

а это и есть скалярное произведение В·А.

Сравнение (6.1) с (6.2) обнаруживает следующую аналогию. Состояния χ и φ соответствуют двум векторам А и В. Базисные состояния i отвечают специальным векторам еi, к которым мы относим все прочие векторы. Любой вектор может быть представлен как линейная комбинация трех «базисных векторов» еi. Далее, если вам известны коэффициенты при каждом «базисном векторе» в этой комбинации, т. е. три его компоненты, то вы знаете о векторе все. Точно так же любое квантовомеханическое состояние может быть полностью описано амплитудами <i|φ> перехода в базисные состояния, и если эти коэффициенты вам известны, то вы знаете все, что можно знать о состоянии. Из-за этой тесной аналогии то, что мы назвали «состоянием», часто именуют «вектором состояния».

Раз базисные векторы еi перпендикулярны друг другу, то существует соотношение

(6.3)

Это соответствует соотношению (3.25) между базисными состояниями i

(6.4)

Теперь вы понимаете, почему говорят, что базисные состояния i все «ортогональны друг другу».

Между (6.1) и скалярным произведением есть одно минимальное различие. У нас

(6.5)

а в векторной алгебре

В квантовой механике с ее комплексными числами мы обязаны выдерживать порядок множителей, а в скалярном произведении порядок неважен.

Теперь рассмотрим такое векторное уравнение:

(6.6)

оно немножко необычно, но тем не менее верно. И означает оно то же самое, что и

(6.7)

Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги