Читаем Том 3. Квантовая механика полностью

Мы говорили также о том, что происходит, когда частицы проходят через прибор. Если мы выпустим частицы в определенном состоянии φ, затем проведем их через прибор, а после проделаем измерение, чтобы посмотреть, находятся ли они в состоянии χ, то результат будет описываться амплитудой

(6.16)

Такой символ не имеет близкого аналога в векторной алгебре. (Он ближе к тензорной алгебре, но эта аналогия не так уж полезна.) Мы видели в гл. 3 [формула (3.32)], что (6.16) можно переписать так:

(6.17)

Это пример двукратного применения основного правила (6.9).

Мы обнаружили также, что если вслед за прибором А по ставить другой прибор B, то можно написать

(6.18)

Это опять-таки следует прямо из предложенного Дираком метода записи уравнения (6.9). Вспомните, что между В и A всегда можно поставить черту (|), которая ведет себя совсем как множитель единица.

Кстати говоря, об уравнении (6.17) можно рассуждать и иначе. Предположим, что мы рассуждаем о частице, попадающей в прибор А в состоянии φ и выходящей из него в состоянии ψ. Мы можем задать себе такой вопрос: можно ли найти такое состояние ψ, чтобы амплитуда перехода от ψ к χ тождественно совпадала с амплитудой <χ|A|φ>? Ответ гласит: да. Мы хотим, чтобы (6.17) заменилось уравнением

(6.19)

Конечно, этого можно достичь, если взять

(6.20)

что и определяет собой ψ. «Но оно не определяет собой ψ, — скажете вы, — оно определяет только <i|ψ>». Однако все же определяет ψ; ведь если у вас есть все коэффициенты, связывающие ψ с базисными состояниями i, то ψ определяется однозначно. И действительно, можно поупражняться с нашими обозначениями и записать (6.20) в виде

(6.21)

А раз это уравнение справедливо при всех i, то можно просто писать

(6.22)

Теперь мы вправе сказать: «Состояние ψ — это то, что получается, если начать с φ и пройти сквозь аппарат A».

Еще один, последний пример полезных уловок. Начинаем опять с (6.17). Раз это уравнение соблюдается при любых χ и φ, то их обоих можно сократить! Получаем[19]

(6.23)

Что это значит? Только то, что получится, если вернуть на свои места φ и χ. В таком виде это уравнение «недокончено» и неполно. Если умножить его «справа» на |φ>, то оно превращается в

(6.24)

а это снова то же уравнение (6.22). В самом деле, мы бы могли просто убрать из (6.22) все j и написать

(6.25)

Символ А — это не амплитуда и не вектор; это вещь особого рода, именуемая оператором. Он — нечто, что «оперирует» над состоянием, чтобы создать новое состояние; уравнение (6.25) говорит, что |ψ> — это то, что получается, если А действует на |φ>. Это уравнение тоже нужно считать недоконченным, открытым, пока слева оно не умножится на какое-то «брэ», скажем на <χ|, и не обратится в

(6.26)

Оператор А, разумеется, полностью описывается тем, что за дается матрица амплитуд <i|A|j>; ее также пишут в виде Аij— через любую совокупность базисных векторов.

Все эти математические обозначения на самом деле ничего нового не вносят. Единственный резон, почему мы их ввели, — мы хотели показать, как пишутся обрывки уравнений, потому что во многих книжках вы встретите уравнения, написанные в неполном виде, и нет причин вам пугаться, увидев их. Если вы захотите, вы всегда сможете дописать те части, которых не хватает, и получить уравнение, связывающее числа. Оно будет выглядеть более привычно.

Кроме того, как вы увидите, обозначения «брэ» и «кет» очень удобны. Прежде всего мы теперь сможем указывать состояния, задавая их вектор состояния. Когда мы захотим вести речь о состоянии с определенным импульсом р, то скажем: «состояние |р>». Или будем говорить о некотором произвольном состоянии |ψ>. Для единообразия мы всегда, говоря о состоянии, будем употреблять «кет» и писать |ψ>. (Конечно, этот выбор совершенно произволен; в равной мере мы могли бы остановиться и на «брэ» <ψ|.)

<p><strong>§ 3. Каковы базисные состояния мира?</strong></p>
Перейти на страницу:

Все книги серии Фейнмановские лекции по физике

Похожие книги