Читаем Том 37. Женщины-математики. От Гипатии до Эмми Нётер полностью

ВСЕ ЕДИНО, ДИФФЕРЕНЦИРОВАНИЕ — ТО ЖЕ, ЧТО ИНТЕГРИРОВАНИЕ

Если мы посмотрим на внушительное здание математического анализа под определенным углом, то сразу же станет понятно: если нам известны все мельчайшие мгновенные изменения переменной, то при помощи некоторой суммы мы сможем вычислить ее общее изменение. Этот интуитивно понятный вывод естественным образом приводит к определению дифференцирования и интегрирования.

Тысячи страниц «Основ анализа для итальянской молодежи» посвящены общей теме — дифференциальному и интегральному исчислению. Кроме того, в этой книге делается упор на том, что дифференцирование и интегрирование — обратные операции. Сегодня это утверждение кажется очевидным и рассматривается в школьном курсе анализа одним из первых, но в 1748 году все было не так просто.

Если использовать современные термины — более точные, но, к сожалению, более пространные, — то утверждение «интегрирование и дифференцирование — взаимно обратные операции» будет звучать так: если f — функция, непрерывная на отрезке [а, Ь], и задано следующее соотношение


то функция F является дифференцируемой на отрезке [а, Ь] (она называется первообразной функции f) и F(х) = f(x). Кроме того, если функция F дифференцируема на отрезке [а, Ь] и F'(х) = f(x), то


Это двойное утверждение получило название основной теоремы анализа. Ее практически полностью сформулировал Исаак Барроу (1630–1677), щедро уступивший Ньютону должность лукасовского профессора Кембриджа.

* * *



Верзьера Аньези на заключительных страницах первого тома «Основ анализа».


Софи Жермен (1776–1831)


Предлагаем вам провести небольшой эксперимент с карманным калькулятором — лучше слегка устаревшим. Этот эксперимент не нов, и если он уже знаком вам, пропустите следующий абзац. Может быть, вы его видели в одной из серий «Симпсонов». Как вы, наверное, знаете, все происшествия, которые случаются с Гомером Симпсоном, обычно оканчиваются неудачей, поэтому не говорите, что мы вас не предупреждали!

В руки Гомеру попало следующее предполагаемое равенство

178212 + 184112 = 192212.

Гомер, который по определению не знает математики, решает проверить это равенство: он берет старый калькулятор, который позволяет выполнять только элементарные действия и показывает 10 цифр результата, и находит сумму

178212 + 184112.

Затем он вычисляет 192212 и — сюрприз! — на экране высвечиваются те же 10 цифр. Прощай, знаменитая теорема Ферма — мы нашли контрпример:

178212 + 184112 = 192212.

Или нет? Истина восторжествует, если мы возьмем современный калькулятор — станет очевидно, что разность этих чисел не равна нулю. Если этот калькулятор способен работать с достаточным числом десятичных знаков, то мы получим, что разность этих чисел равна 700212234530608691501223040959 — это очень малое, ничтожное число, практически равное нулю по сравнению с исходными числами (они имеют по 40 знаков), но его достаточно для того, чтобы гипотеза Ферма — сегодня она носит статус теоремы — устояла. Однако в XIX веке теорема Ферма еще не была доказана, и математики лишь предполагали ее истинность. Согласен с ними был и господин Антуан Огюст Леблан, точнее говоря, Софи Жермен — женщина, взявшая себе этот псевдоним. Господин Леблан в действительности существовал и был настоящим мужчиной с усами. Софи Жермен всего лишь подписывала письма его именем. Похоже, настало время разъяснить все вышесказанное. Итак, кто такая Софи Жермен?


Неженская целеустремленность

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги