Читаем Том 37. Женщины-математики. От Гипатии до Эмми Нётер полностью

Итак, Софи Жермен всецело посвятила себя математике. Она так и не вышла замуж и направила всю энергию на занятия любимым делом. В частности, девушка занялась теорией чисел и теоремой Ферма, которая привлекла ее внимание простой формулировкой и загадочным доказательством — хотя сам Ферма, по-видимому, его нашел, отыскать его вновь не удавалось никому. Софи начала свой путь в математике, можно сказать, встав под знамена Лежандра и еще одного известного ученого. Еще в молодости, в 1804 году, Софи написала ни много ни мало лучшему математику мира, Гауссу, объяснив ему свои идеи и рассказав об открытиях, связанных с теоремой Ферма. Гаусс после публикации «Арифметических исследований» считался ведущим специалистом по теории чисел, поэтому Софи обращалась к нему в письме с особым почтением. Она подписала письмо псевдонимом Леблан — в противном случае адресат мог не принять ее всерьез. К удивлению Софи, Гаусс довольно дружелюбно ответил ей, хоть и не привел ответов на все ее вопросы. Вероятно, этих вопросов было слишком много, и прославленный ученый не нашел достаточно времени для этого. Однако то, что показалось Гауссу интересным, он прочел.



Софи Жермен переписывалась с Гауссом под псевдонимом Леблан. В жизни они никогда не встречались.


Обман раскрылся спустя несколько лет, когда Наполеон отправил свои армии в Германию. Софи, опасаясь, что с Гауссом что-то случится, обратилась к одному из своих друзей, генералу Пернети, который волей случая командовал войсками, расположившимися вблизи поместья Гаусса. Пернети галантно исполнил поручение и обеспечил безопасность ученого и его имущества, однако во время одного из визитов допустил оплошность, раскрыв Гауссу истинное лицо господина Леблана. Изумленный Гаусс написал Софи: он никогда не подумал бы, что автором столь глубокомысленных математических утверждений может быть женщина.

Софи Жермен всегда ассоциируется с доказательством знаменитой теоремы Ферма. Математики сразу же поняли, что Ферма в своем «чудесном доказательстве» допустил ошибку (скорее всего, он ошибся на одном весьма непростом этапе доказательства, когда используется определенный круговой многочлен — но не будем вдаваться в детали), но исправить эту ошибку и найти доказательство никак не удавалось. Привлекательность теоремы Ферма неоспорима: ее может понять любой; с ней, по словам самого Ферма, связана отдельная загадка; она записывается с помощью всего нескольких математических символов; за ее доказательство предлагались внушительные денежные премии и так далее. Профессиональные математики почти всегда относились к теореме Ферма с меньшим энтузиазмом, чем простые смертные. Нельзя отрицать, что эта теорема — самая известная в математике, но такие звезды, как Гаусс или, позднее, Гильберт, не уделяли ей особого внимания.

Можно сказать, что именитые ученые вели себя, словно лисица из басни «Лиса и виноград», хотя в разговоре о подобных гигантах мысли следует воздерживаться от подобных обобщений. Гаусс указывал, что доказательство теоремы Ферма не вызвало бы особого прогресса в науке, а его предполагаемые следствия были, скорее всего, не слишком важными. Кроме того, — ив этом Гаусс был совершенно прав — он сам мог сформулировать множество похожих теорем.

Как бы то ни было, доказать теорему Ферма было совсем не просто. Софи Жермен, к примеру, доказала, что при п = 5 если и существует контрпример, то он выражается колоссальной величиной — по ее подсчетам, превосходящей 691053006763356095514121490614455078525. В поисках доказательства требовалось двигаться медленно и рассматривать сначала отдельные показатели степени, затем — семейства показателей.

Сделаем небольшое отступление и расскажем о принципиально новом подходе к доказательству теоремы Ферма, который применила Софи Жермен. Ранее (и позднее) предпринимались попытки доказать теорему одним и тем же способом: показать, что не существует х, у z таких, что х + уn = zn для какого-то конкретного n. Так, Ферма доказал свою теорему для n = 4, Эйлер — для n = 3, Лежандр — для n = 5, Ламе — для n = 7 и так далее. Софи выбрала иную стратегию и попыталась определить, при каких условиях определенные значения n можно будет исключить из рассмотрения. Для этого она описала особый класс простых чисел р (сегодня они называются простыми числами Жермен). Простое число р называется простым числом Жермен, если 2р + 1 также является простым. Приведем в качестве примера простые числа Жермен, меньшие 200: 2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179 и 191. Еще один любопытный факт: наибольшее известное (на 2011 год) простое число Жермен равно 183027·2265440 — 1 и содержит 79911 цифр.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги