Читаем Том 38. Измерение мира. Календари, меры длины и математика полностью

Чжун (середина) и Цзи (конец), а также на четыре времени года — Чунь (весна), Ся (лето), Цю (осень) и Дун (зима).

Названия месяцев образуются сочетанием этих названий: так, последний месяц осени называется Цзи-Цю. Месяцы в китайском календаре состоят из трех недель по 10 дней в каждой. Дни месяца начинаются в полночь и считаются по порядку.

Подобно тому, как в западной культуре годы образуют века из 100 лет, китайцы объединяют годы в 60-летние циклы под названием Цзя-Цзы, которые имеют две составляющих: первая соответствует «небесным стволам» гань, вторая — животным зодиака, чжи.

Эти две составляющие объединяются в последовательности. 60-летний цикл состоит из следующих сочетаний.

Нынешний 60-летний цикл начался 2 февраля 1984 года. Это означает, что, например, год У-инь, 15-й год 78-го цикла, начался 28 января 1998 года, 20-й год 78-го цикла начался 1 февраля 2003 года.

* * *

СООТВЕТСТВИЕ МЕЖДУ КИТАЙСКИМ И ГРИГОРИАНСКИМ КАЛЕНДАРЕМ

В следующей таблице приведены даты начала нового года по китайскому календарю и соответствующие даты по григорианскому календарю.

* * *

В современном Китае традиционный календарь называется сельскохозяйственным, а григорианский — стандартным, или западным. С григорианским календарем китайцев познакомили иезуиты в XIX веке, и сегодня именно он используется в Китае в повседневной жизни. Китайский календарь применяется для определения ряда традиционных дат, например Нового года или праздника Дуань-у-цзе, праздника драконьих лодок, который также называется «двойной пятеркой», так как проводится в пятый день пятого лунного месяца.

Французский революционный календарь

Во время различных революций неоднократно предпринимались попытки отказаться от григорианского календаря, чтобы порвать с прошлым и организовать время в соответствии с новым видением мира. К примеру, французский революционный календарь состоял из 12 месяцев по 30 дней, разделенных на 3 декады по 10 дней в каждой. В конце года добавлялись 3 или 6 дней (для високосных годов). Этот календарь, отражавший идеалы Великой французской революции, просуществовал всего лишь с 1792 по 1804 год. Амбициозная реформа календаря имела три цели: отвергнуть прошлый монархический режим, определить светские праздники нового общества и упорядочить системы мер и весов, в том числе систему измерения времени.

Во французском революционном календаре отсчет лет начался заново, с первого года. Как указывали его авторы, теперь нельзя было отсчитывать годы так же, как во времена угнетавшего их короля, когда они на самом деле «не жили». С введением нового календаря началась новая эпоха. Датой начала новой эры стал день 22 сентября 1792 года, когда была свергнута монархия и провозглашена республика.

По счастливой случайности, день 22 сентября был днем осеннего равноденствия. Революционеры увидели в этом добрый знак: равенство дня и ночи стало символом всеобщего равенства людей. История возвращалась к природе, к естественному ходу событий.

Как и новые рациональные меры длины и веса (килограмм и метр), десятичной системе счисления подчинялся и новый календарь. Целью авторов календаря была рационализация общественной жизни, поэтому они стремились сделать календарь простым, понятным, точным и универсальным. Прежняя система была признана памятником рабства и невежества, полным отклонений — месяцы имели разную продолжительность, а праздники приходились на разные дни. Новый календарь отражал движение небесных тел, а все расчеты в нем производились в десятичной системе счисления. Все интервалы времени, меньшие месяца, делились на части в десятичной системе. Двенадцать месяцев состояли из 30 дней и делились на интервалы в 10 дней — декады. Оставшиеся пять дней добавлялись в конце года. Каждые четыре года к ним добавлялся еще один день. Новая система, по сути, повторяла древнеегипетский календарь: в нем было 12 месяцев по 30 дней в каждом, которые делились на интервалы по 10 дней, а в конце года добавлялись 3 дней.

* * *

ВЕСНА ВО ФРАНЦУЗСКОМ РЕВОЛЮЦИОННОМ КАЛЕНДАРЕ

Весна начиналась месяцем Жерминаль. Далее перечислены дни этого месяца и образы, которые с ними соотносились. Каждому месяцу соответствовал свой женский образ.

Жерминаль (21 марта — 19 апреля):

Образ Жерминаль в революционном календаре.

* * *

Революционный календарь, провозглашенный 5 октября 1793 года, имел светский характер: в нем не было воскресений — дней, когда воздавались почести Богу, и дней почитания святых. Так как из календаря были исключены все религиозные символы, требовалось выбрать новую традицию, и авторы обратились к природе.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги