Читаем Том 38. Измерение мира. Календари, меры длины и математика полностью

Приближенное значение площади многоугольника принимается равным 64. В действительности оно составляет 63, так как площадь каждого квадрата равна 3 х 3 = 9, а многоугольник состоит из 5 целых квадратов и 4 половин — всего 7 квадратов площадью в 9 единиц каждый. В расчетах мы будем использовать значение площади в 64 единицы, так как 64 — квадрат (82). Кроме того, так мы сможем использовать только дроби с числителем, равным 1, подобно древним египтянам.

Так, ~= 64. Проведя необходимые расчеты и упростив выражение, получим:

Задача о квадратуре круга наряду с задачами об удвоении куба и трисекции угла принадлежала к числу трех классических задач древнегреческой математики. Задача о вычислении квадратуры плоских поверхностей, ограниченных кривыми, вызвала бы у греков довольно много трудностей, если бы Гиппократ Хиосский (ок. 470 г. до н. э. — ок. 410 г. до н. э.) не доказал, что возможно вычисление квадратуры определенных криволинейных фигур — двуугольников, построенных особым образом.

Площадь фигуры, выделенной серым цветом, равна площади треугольника АВС.

Для простоты примем АССВ = 1. Если мы покажем, что площадь двуугольника АВ, который дополняет треугольник AВС до сектора, составляющего четверть круга, равна сумме площадей двух двуугольников, которые дополняют треугольник до полукруга диаметром АВ, то мы докажем исходное утверждение. Достаточно заметить, что в малом круге сумма площади треугольника и площадей двух двуугольников равна площади полукруга, равно как и сумма площади двуугольника АВ и площади фигуры, выделенной серым цветом.

Радиус большого круга равен 1, следовательно, его площадь равна π. Площадь сектора в четверть круга равна π/4. Диаметр меньшего круга равен √2, радиус — √2/2, площадь — 1/2π. Половина малого круга вновь будет иметь площадь π/4.

Иными словами, половина малого круга и четверть большого круга имеют равную площадь. Таким образом, можно утверждать, что сумма площадей двух двуугольников равна площади большого двуугольника. Отсюда следует, что площадь треугольника равна площади фигуры, выделенной серым цветом.

В 1882 году немецкий математик Фердинанд Линдеман (1852–1939) доказал, что число π является трансцендентным, поэтому решить задачу о квадратуре круга при помощи циркуля и линейки невозможно. Возможно, именно после многовековых попыток решить эту задачу и возникло выражение «квадратура круга», которое в обычном языке употребляется в переносном смысле и означает нечто очень сложное.

Задачами о квадратуре занимался Евдокс Книдский. Он применил геометрический метод, в котором по мере выполнения вычислений точность результата постепенно повышалась. Метод Евдокса был схож с теми, что использовали индийцы и китайцы для вычисления длины окружности и площади круга путем последовательного построения многоугольников. Позднее подобный метод применил Архимед для вычисления площади фигуры, ограниченной дугой параболы, и объема шара. Евклид привел все эти результаты в книге XII своих «Начал» (ок. 300 г. до н. э.). В XVII веке Грегуар де Сен-Венсан (1584–1667) назвал этот метод методом исчерпывания.

Задачи о квадратуре поверхностей, ограниченных кривыми, были окончательно решены с появлением дифференциального исчисления. Интегрирование — математическая операция, позволяющая вычислять площади плоских фигур, ограниченных кривыми, если известны уравнения этих кривых. Рассмотрим пример. Пусть дана кривая — график функции f(x) = √x. Чему будет равна площадь фигуры, ограниченной этой кривой и горизонтальной осью координат на интервале от 0 до 1?

На языке математики ответ записывается так:

Следующий рисунок иллюстрирует геометрический метод вычисления искомой площади, который завершается переходом к пределу. Суть этого метода заключается в построении последовательности прямоугольников, как в ранее приведенном примере с картой и листом бумаги, разделенном на квадраты. Вычислив сумму площадей построенных прямоугольников, можно найти приближенное значение площади фигуры. Площадь этой фигуры можно покрыть прямоугольниками сверху или снизу (полученная площадь будет соответственно больше или меньше искомой площади фигуры).

Покрытие пятью прямоугольниками сверху и двенадцатью прямоугольниками снизу (в этом случае первый прямоугольник не виден, так как имеет нулевую высоту).

Основная теорема анализа, открытая Ньютоном и Лейбницем, связывает операции дифференцирования и интегрирования. Применив эту теорему к функции f(x) = √график которой ограничивает рассматриваемую фигуру, получим первообразную функцию

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги