Объем тела вращения, полученного вращением плоской фигуры, ограниченной линиями
Эта формула в некотором роде отражает метод Архимеда, если интерпретировать
Эпилог
Понятие меры появилось свыше 5 тысяч лет назад, когда возникла необходимость в измерении предметов, окружавших человека. Посмотрим, какими были основные задачи, стоявшие перед математиками конца XIX века и приведшие к созданию теории меры. Древние египтяне занимались вычислением площадей и объемов (см. папирус Ахмеса и Московский математический папирус) и использовали приближенное значение
Эти доказательства даны в «Началах» Евклида (ок. 300 г. до н. э.), где, однако, нет определений длины, площади и объема — эти понятия определяются неявно при описании фигур. Так, определяется линия, поверхность и тело: линия есть длина без ширины, поверхность — то, что имеет лишь длину и ширину, а тело — то, что имеет длину, ширину и глубину. Евклид также не определил, что означает «измерить» — это слово он использует не только в связи с тремя вышеупомянутыми «величинами», но и по отношению к числам. К примеру, он определяет «часть» и «части» аналогично современным понятиям «делитель» и «не делитель», но использует при этом слово «измерить: «Часть есть число в числе, меньшее в большем, если оно измеряет большее. Части же — если оно его не измеряет». Так, к примеру, 3 — «часть» 13, а 6 — «части» 13.
Не встретим мы определения меры и у других древнегреческих авторов, в частности у Архимеда, который сравнивает известные площади и объемы для вычисления новых. Так, мы показали, как он вычислил объем шара. Подобных понятий меры было достаточно для развития математики на протяжении многих веков.
Главным героем следующего этапа стал
где
Другие авторы, в частности
Нетрудно предположить, что это сравнение между элементами
Таким образом, суть проблемы заключалась в том, чтобы определить разницу между счетными и измеримыми множествами. Счетное множество — это множество, для которого можно определить взаимно-однозначное соответствие со множеством натуральных чисел, а измеримое множество — это множество, для которого можно определить взаимно-однозначное соответствие со множеством неотрицательных вещественных чисел. Это различие является формальным выражением разницы между счетом и измерением, между дискретным и непрерывным, о которой мы рассказали в главе 1. В английском языке разница между счетными и несчетными предметами отражена конструкциями