Читаем Том 9. Загадка Ферма. Трехвековой вызов математике полностью

ЧАСТНЫЕ РЕШЕНИЯ ФЕРМА ДЛЯ СТЕПЕНИ 3

Хотя уравнение х3 + у3 = z3 не имеет целых решений, отличных от нуля, они «почти» есть, так как некоторые значения х, у, z «почти» удовлетворяют этому уравнению. Нетрудно видеть, что 53 + 63 = 73 — 2 всего на две единицы отличается от равенства, приведенного Ферма. Еще более удивительный случай: 6 + 83 = 93 — 1. Кажется невероятным, что мы подобрались так близко к решению, но тем не менее не существует целых чисел, которые бы удовлетворяли уравнению!

Что произойдет, если мы добавим новый член в уравнение Ферма? Удивительно, но в этом случае оно будет иметь целые решения, отличные от нуля! Так, 33 + 43 + 53 = 63, 73 + 143 + 173 = 203.

В одном из эпизодов сериала «Симпсоны» можно увидеть равенство 178212 + 184112 = 192212.

Неужели Лизе Симпсон удалось решить загадку Ферма? После более тщательного анализа становится понятно, что эти числа «почти» являются решением, так как равенство выполняется с точностью до девятого знака. В другом эпизоде приводится еще более точное решение. В серии «Волшебник с вечнозеленой террасы» упоминается равенство 398712 + 436512 = 447212 — еще одно «почти» решение, левая и правая части которого совпадают с точностью до десятого знака, и, кроме этого, цифры первых разрядов также совпадают. Обнаружить эту неточность с помощью обычного восьмиразрядного калькулятора невозможно.

* * *

Ферма полагал, что найденный им метод бесконечного спуска является общим методом, который можно использовать в доказательствах любых теорем теории чисел, подобно тому как Декарт считал, что все задачи в природе можно решить с помощью аналитической геометрии. Но реальность, как всегда, оказалась шире подобных представлений. Ее многообразие нельзя охватить каким-то одним методом, сколь мощным бы он ни был. Всегда будут находиться исключения, которые будут бросать вызов человеческому разуму, и человеку нужно будет постоянно превосходить самого себя, чтобы достигнуть новых и новых высот. Именно это произошло с последней теоремой Ферма.

С помощью метода бесконечного спуска Ферма нашел доказательство для n = 3, но, возможно, он понял, что доказать теорему аналогичным способом для высших степеней не удастся. Но даже несмотря на это, вклад Ферма остается поразительным — доказав теорему для n = 4, он создал новый математический метод, оказавшийся удивительно многогранным.

Кроме этого, он доказал свою теорему для половины всех возможных показателей, что уже немало. Тем не менее, вопрос о доказательстве теоремы для всех остальных случаев оставался открытым. С тех пор на него пытались ответить самые выдающиеся математики, но безуспешно.



Труды Ферма были опубликованы после его смерти. На рисунке — титульный лист одной из книг Ферма, изданной в XIX веке.


Гений, который не публиковал своих работ


Мы неоднократно упоминали, что Ферма не хотел публиковать свои работы. Но это не совсем так. Уже в 1636 году он отправил Мерсенну изложение своего метода нахождения максимумов и минимумов и попросил показать эту работу парижским математикам. Кроме этого, в своей переписке, которую он вел на протяжении всей жизни, Ферма не просто предлагал новые задачи, но и указывал пути их решения, а в некоторых случаях подробно объяснял свои методы.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг