21 марта 1816 года Гаусс ответил: «Признаюсь, что теорема Ферма сама по себе не представляет для меня большого интереса, так как я с легкостью могу сформулировать множество подобных теорем, которые нельзя будет ни доказать, ни опровергнуть». Несмотря на это, Гаусс тоже работал над решением, что следует из его личных записей, где приведены доказательства для n
= 3 и n = 5. Неизвестно, пытался ли Гаусс доказать теорему до того, как Ольберс предложил ему заняться этой темой. Быть может, осознав трудность задачи, он предпочел отклонить приглашение и продолжить работу в одиночку, надеясь получить какой-то значимый результат, достойный публикации. Возможно, он действительно не уделил особого внимания этой задаче и предпочел обратиться к более интересным темам.Несмотря на слова Гаусса, теорема не давала покоя великим математикам того времени, и они усердно занимались поисками доказательства. Теперь на кону стояла не только премия академии, но также известность и слава. Наступил срок подачи заявок, но доказательство не удалось найти никому! Неудивительно, что в академии совершенно не ожидали такого результата. До учреждения этой премии столь крупный ученый, как Эйлер, пытался найти доказательство, но ему удалось это сделать только для n
= 3 примерно в 1760 году. Как уже говорилось в предыдущей главе, возможно, доказательство для этого случая нашел еще Ферма с помощью своего метода бесконечного спуска. Но теперь математическое сообщество могло бы спать спокойно, зная, что доказательство строго оформил и записал Эйлер. Было очевидно, что куб нельзя представить в виде суммы двух кубов, но что можно сказать о бесконечном множестве всех остальных степеней?Привлекательность теоремы в научном сообществе неуклонно росла. Немецкий математик Иоганн Петер Густав Лежён-Дирихле
(1805–1859) и француз Адриен Мари Лежандр (1752–1833) в 1825 году независимо друг от друга нашли доказательство для n = 5. В 1832 году Дирихле сделал еще один шаг и доказал теорему Ферма для n = 14. В 1839 году французГабриель Ламе (1795–1870) вошел в историю, доказав теорему для n = 7. Восемь лет спустя он объявил, что ему удалось найти доказательство в общем виде, но он ошибался. Доказать теорему Ферма для нескольких частных случаев удавалось многим математикам. Учитывая, что простых показателей степени бесконечно много, получается, что доказательство теоремы должно было занять бесконечно много времени?
Портрет немецкого математика Иоганна Петера Густава Лежёна-Дирихле
.
Неожиданное действующее лицо
Надежда на то, что несколько случаев можно объединить в рамках одного доказательства, появилась благодаря усилиям француженки Софи Жермен
(1776–1831) — возможно, величайшей женщины-математика всех времен. В 1823 году она доказала, что если р и 2р + 1 — два простых числа, больших 2, то хр + ур = zp не имеет примитивных решений (то есть взаимно простых), в которых xyz не делилось бы на р. Согласно правилам академии, женщины не могли подавать свои работы лично, поэтому результаты Софи Жермен были переданы научному сообществу Лежандром и его коллегой Огюстеном Луи Коши.Как уже говорилось в предыдущей главе, если бы теорему удалось доказать для всех показателей степени, являющихся простыми числами, то она была бы доказана для всех натуральных. Аналогично нетрудно видеть, что если целые решения х, у, z
имеют общий множитель, то, поделив обе части на этот множитель, мы снова получим целое решение. Следовательно, доказательство теоремы для примитивных решений является ее общим доказательством для всех случаев. Начиная с работ Жермен стали различать два случая на множестве решений. Первый случай — ни х, ни у, ни z не делятся на р. Второй случай — либо х, либо у, либо z делится на р. Как говорил Лежандр, «одним росчерком пера» доказательство Жермен превращалось в доказательство теоремы Ферма для первого случая, то есть для огромного множества чисел. Для тех чисел, которых не хватало, чтобы доказать теорему для всех чисел меньше 100, доказательство привел сам Лежандр.
Письмо Софи Жермен
математику Жозефу Луи Лагранжу. Благодаря этой французской женщине-математику в доказательстве последней теоремы Ферма был сделан большой шаг вперед.* * *